Loading…
Face recognition using scale-adaptive directional and textural features
A novel approach to face recognition problem using directional and texture information from face images, is proposed in this paper. In order to capture the directionality, specially designed using local polynomial approximation technique, scale adaptive digital filters are used. For texture features...
Saved in:
Published in: | Pattern recognition 2014-05, Vol.47 (5), p.1846-1858 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03 |
container_end_page | 1858 |
container_issue | 5 |
container_start_page | 1846 |
container_title | Pattern recognition |
container_volume | 47 |
creator | Mehta, Rakesh Yuan, Jirui Egiazarian, Karen |
description | A novel approach to face recognition problem using directional and texture information from face images, is proposed in this paper. In order to capture the directionality, specially designed using local polynomial approximation technique, scale adaptive digital filters are used. For texture features extraction, a low dimensional and computationally effective local descriptor is utilized. Textural and directional features are captured at the holistic and part based levels resulting in a robust face descriptor. The proposed method is tested on a number of standard test face datasets (ORL, XM2VTS, Extended Yale, CMU-PIE, AR, and FERET) for different scenarios and its performance is compared with several state-of-the-art techniques.
•We propose a face descriptor based on a combination of directional and textural features.•Discriminative and nearly illumination invariant directional features are introduced.•Pyramid partitioning is used to capture local as well as holistic features.•Experiments performed on six standard face datasets shows robustness of proposed descriptor.•Algorithm achieves nearly perfect recognition rate on a number of standard face datasets. |
doi_str_mv | 10.1016/j.patcog.2013.11.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567080309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320313004998</els_id><sourcerecordid>1567080309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw-9CF5aZ5Im3b0IIn6B4EXPYTaZSpbarklX9N-bUvHo6Z1h3neGeYQ4Q6gQ0Fxuqi2NbnirJKCqEKsse2KBy0aVGmu5LxYACkslQR2Ko5Q2ANjkwULc35HjInJO92EMQ1_sUujfiuSo45I8bcfwyYUP2TKNqSuo98XIX-Mu5qZlygWnE3HQUpf49FePxevd7cvNQ_n0fP94c_1UOmVWY1kbMmvTNiBXugVvGrV0NTSa65q0NtJJD-sVIGtER3rdNKQk-bWutfG-BXUsLua92zh87DiN9j0kx11HPQ-7ZFGbBpagYJWt9Wx1cUgpcmu3MbxT_LYIduJmN3bmZiduFtFmybHz3ws0QWgj9S6kv6xcKpRST-uvZh_ndz8DR5tc4N7xzMr6Ifx_6Ad7-YTz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567080309</pqid></control><display><type>article</type><title>Face recognition using scale-adaptive directional and textural features</title><source>ScienceDirect Journals</source><creator>Mehta, Rakesh ; Yuan, Jirui ; Egiazarian, Karen</creator><creatorcontrib>Mehta, Rakesh ; Yuan, Jirui ; Egiazarian, Karen</creatorcontrib><description>A novel approach to face recognition problem using directional and texture information from face images, is proposed in this paper. In order to capture the directionality, specially designed using local polynomial approximation technique, scale adaptive digital filters are used. For texture features extraction, a low dimensional and computationally effective local descriptor is utilized. Textural and directional features are captured at the holistic and part based levels resulting in a robust face descriptor. The proposed method is tested on a number of standard test face datasets (ORL, XM2VTS, Extended Yale, CMU-PIE, AR, and FERET) for different scenarios and its performance is compared with several state-of-the-art techniques.
•We propose a face descriptor based on a combination of directional and textural features.•Discriminative and nearly illumination invariant directional features are introduced.•Pyramid partitioning is used to capture local as well as holistic features.•Experiments performed on six standard face datasets shows robustness of proposed descriptor.•Algorithm achieves nearly perfect recognition rate on a number of standard face datasets.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2013.11.013</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Approximation ; Detection, estimation, filtering, equalization, prediction ; Digital filters ; Exact sciences and technology ; Face classification ; Face recognition ; Face representation ; Image processing ; Information, signal and communications theory ; Local Binary Patterns (LBP) ; Local Polynomial Approximation (LPA) ; Mathematical analysis ; Pattern recognition ; Polynomials ; Signal and communications theory ; Signal processing ; Signal, noise ; Surface layer ; Telecommunications and information theory ; Texture</subject><ispartof>Pattern recognition, 2014-05, Vol.47 (5), p.1846-1858</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03</citedby><cites>FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28312259$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehta, Rakesh</creatorcontrib><creatorcontrib>Yuan, Jirui</creatorcontrib><creatorcontrib>Egiazarian, Karen</creatorcontrib><title>Face recognition using scale-adaptive directional and textural features</title><title>Pattern recognition</title><description>A novel approach to face recognition problem using directional and texture information from face images, is proposed in this paper. In order to capture the directionality, specially designed using local polynomial approximation technique, scale adaptive digital filters are used. For texture features extraction, a low dimensional and computationally effective local descriptor is utilized. Textural and directional features are captured at the holistic and part based levels resulting in a robust face descriptor. The proposed method is tested on a number of standard test face datasets (ORL, XM2VTS, Extended Yale, CMU-PIE, AR, and FERET) for different scenarios and its performance is compared with several state-of-the-art techniques.
•We propose a face descriptor based on a combination of directional and textural features.•Discriminative and nearly illumination invariant directional features are introduced.•Pyramid partitioning is used to capture local as well as holistic features.•Experiments performed on six standard face datasets shows robustness of proposed descriptor.•Algorithm achieves nearly perfect recognition rate on a number of standard face datasets.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Digital filters</subject><subject>Exact sciences and technology</subject><subject>Face classification</subject><subject>Face recognition</subject><subject>Face representation</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Local Binary Patterns (LBP)</subject><subject>Local Polynomial Approximation (LPA)</subject><subject>Mathematical analysis</subject><subject>Pattern recognition</subject><subject>Polynomials</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Surface layer</subject><subject>Telecommunications and information theory</subject><subject>Texture</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw-9CF5aZ5Im3b0IIn6B4EXPYTaZSpbarklX9N-bUvHo6Z1h3neGeYQ4Q6gQ0Fxuqi2NbnirJKCqEKsse2KBy0aVGmu5LxYACkslQR2Ko5Q2ANjkwULc35HjInJO92EMQ1_sUujfiuSo45I8bcfwyYUP2TKNqSuo98XIX-Mu5qZlygWnE3HQUpf49FePxevd7cvNQ_n0fP94c_1UOmVWY1kbMmvTNiBXugVvGrV0NTSa65q0NtJJD-sVIGtER3rdNKQk-bWutfG-BXUsLua92zh87DiN9j0kx11HPQ-7ZFGbBpagYJWt9Wx1cUgpcmu3MbxT_LYIduJmN3bmZiduFtFmybHz3ws0QWgj9S6kv6xcKpRST-uvZh_ndz8DR5tc4N7xzMr6Ifx_6Ad7-YTz</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Mehta, Rakesh</creator><creator>Yuan, Jirui</creator><creator>Egiazarian, Karen</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140501</creationdate><title>Face recognition using scale-adaptive directional and textural features</title><author>Mehta, Rakesh ; Yuan, Jirui ; Egiazarian, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Digital filters</topic><topic>Exact sciences and technology</topic><topic>Face classification</topic><topic>Face recognition</topic><topic>Face representation</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Local Binary Patterns (LBP)</topic><topic>Local Polynomial Approximation (LPA)</topic><topic>Mathematical analysis</topic><topic>Pattern recognition</topic><topic>Polynomials</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Surface layer</topic><topic>Telecommunications and information theory</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehta, Rakesh</creatorcontrib><creatorcontrib>Yuan, Jirui</creatorcontrib><creatorcontrib>Egiazarian, Karen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehta, Rakesh</au><au>Yuan, Jirui</au><au>Egiazarian, Karen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face recognition using scale-adaptive directional and textural features</atitle><jtitle>Pattern recognition</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>47</volume><issue>5</issue><spage>1846</spage><epage>1858</epage><pages>1846-1858</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>A novel approach to face recognition problem using directional and texture information from face images, is proposed in this paper. In order to capture the directionality, specially designed using local polynomial approximation technique, scale adaptive digital filters are used. For texture features extraction, a low dimensional and computationally effective local descriptor is utilized. Textural and directional features are captured at the holistic and part based levels resulting in a robust face descriptor. The proposed method is tested on a number of standard test face datasets (ORL, XM2VTS, Extended Yale, CMU-PIE, AR, and FERET) for different scenarios and its performance is compared with several state-of-the-art techniques.
•We propose a face descriptor based on a combination of directional and textural features.•Discriminative and nearly illumination invariant directional features are introduced.•Pyramid partitioning is used to capture local as well as holistic features.•Experiments performed on six standard face datasets shows robustness of proposed descriptor.•Algorithm achieves nearly perfect recognition rate on a number of standard face datasets.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2013.11.013</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2014-05, Vol.47 (5), p.1846-1858 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567080309 |
source | ScienceDirect Journals |
subjects | Applied sciences Approximation Detection, estimation, filtering, equalization, prediction Digital filters Exact sciences and technology Face classification Face recognition Face representation Image processing Information, signal and communications theory Local Binary Patterns (LBP) Local Polynomial Approximation (LPA) Mathematical analysis Pattern recognition Polynomials Signal and communications theory Signal processing Signal, noise Surface layer Telecommunications and information theory Texture |
title | Face recognition using scale-adaptive directional and textural features |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20recognition%20using%20scale-adaptive%20directional%20and%20textural%20features&rft.jtitle=Pattern%20recognition&rft.au=Mehta,%20Rakesh&rft.date=2014-05-01&rft.volume=47&rft.issue=5&rft.spage=1846&rft.epage=1858&rft.pages=1846-1858&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2013.11.013&rft_dat=%3Cproquest_cross%3E1567080309%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567080309&rft_id=info:pmid/&rfr_iscdi=true |