Loading…

Face recognition using scale-adaptive directional and textural features

A novel approach to face recognition problem using directional and texture information from face images, is proposed in this paper. In order to capture the directionality, specially designed using local polynomial approximation technique, scale adaptive digital filters are used. For texture features...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition 2014-05, Vol.47 (5), p.1846-1858
Main Authors: Mehta, Rakesh, Yuan, Jirui, Egiazarian, Karen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03
cites cdi_FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03
container_end_page 1858
container_issue 5
container_start_page 1846
container_title Pattern recognition
container_volume 47
creator Mehta, Rakesh
Yuan, Jirui
Egiazarian, Karen
description A novel approach to face recognition problem using directional and texture information from face images, is proposed in this paper. In order to capture the directionality, specially designed using local polynomial approximation technique, scale adaptive digital filters are used. For texture features extraction, a low dimensional and computationally effective local descriptor is utilized. Textural and directional features are captured at the holistic and part based levels resulting in a robust face descriptor. The proposed method is tested on a number of standard test face datasets (ORL, XM2VTS, Extended Yale, CMU-PIE, AR, and FERET) for different scenarios and its performance is compared with several state-of-the-art techniques. •We propose a face descriptor based on a combination of directional and textural features.•Discriminative and nearly illumination invariant directional features are introduced.•Pyramid partitioning is used to capture local as well as holistic features.•Experiments performed on six standard face datasets shows robustness of proposed descriptor.•Algorithm achieves nearly perfect recognition rate on a number of standard face datasets.
doi_str_mv 10.1016/j.patcog.2013.11.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567080309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320313004998</els_id><sourcerecordid>1567080309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw-9CF5aZ5Im3b0IIn6B4EXPYTaZSpbarklX9N-bUvHo6Z1h3neGeYQ4Q6gQ0Fxuqi2NbnirJKCqEKsse2KBy0aVGmu5LxYACkslQR2Ko5Q2ANjkwULc35HjInJO92EMQ1_sUujfiuSo45I8bcfwyYUP2TKNqSuo98XIX-Mu5qZlygWnE3HQUpf49FePxevd7cvNQ_n0fP94c_1UOmVWY1kbMmvTNiBXugVvGrV0NTSa65q0NtJJD-sVIGtER3rdNKQk-bWutfG-BXUsLua92zh87DiN9j0kx11HPQ-7ZFGbBpagYJWt9Wx1cUgpcmu3MbxT_LYIduJmN3bmZiduFtFmybHz3ws0QWgj9S6kv6xcKpRST-uvZh_ndz8DR5tc4N7xzMr6Ifx_6Ad7-YTz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567080309</pqid></control><display><type>article</type><title>Face recognition using scale-adaptive directional and textural features</title><source>ScienceDirect Journals</source><creator>Mehta, Rakesh ; Yuan, Jirui ; Egiazarian, Karen</creator><creatorcontrib>Mehta, Rakesh ; Yuan, Jirui ; Egiazarian, Karen</creatorcontrib><description>A novel approach to face recognition problem using directional and texture information from face images, is proposed in this paper. In order to capture the directionality, specially designed using local polynomial approximation technique, scale adaptive digital filters are used. For texture features extraction, a low dimensional and computationally effective local descriptor is utilized. Textural and directional features are captured at the holistic and part based levels resulting in a robust face descriptor. The proposed method is tested on a number of standard test face datasets (ORL, XM2VTS, Extended Yale, CMU-PIE, AR, and FERET) for different scenarios and its performance is compared with several state-of-the-art techniques. •We propose a face descriptor based on a combination of directional and textural features.•Discriminative and nearly illumination invariant directional features are introduced.•Pyramid partitioning is used to capture local as well as holistic features.•Experiments performed on six standard face datasets shows robustness of proposed descriptor.•Algorithm achieves nearly perfect recognition rate on a number of standard face datasets.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2013.11.013</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Approximation ; Detection, estimation, filtering, equalization, prediction ; Digital filters ; Exact sciences and technology ; Face classification ; Face recognition ; Face representation ; Image processing ; Information, signal and communications theory ; Local Binary Patterns (LBP) ; Local Polynomial Approximation (LPA) ; Mathematical analysis ; Pattern recognition ; Polynomials ; Signal and communications theory ; Signal processing ; Signal, noise ; Surface layer ; Telecommunications and information theory ; Texture</subject><ispartof>Pattern recognition, 2014-05, Vol.47 (5), p.1846-1858</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03</citedby><cites>FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28312259$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehta, Rakesh</creatorcontrib><creatorcontrib>Yuan, Jirui</creatorcontrib><creatorcontrib>Egiazarian, Karen</creatorcontrib><title>Face recognition using scale-adaptive directional and textural features</title><title>Pattern recognition</title><description>A novel approach to face recognition problem using directional and texture information from face images, is proposed in this paper. In order to capture the directionality, specially designed using local polynomial approximation technique, scale adaptive digital filters are used. For texture features extraction, a low dimensional and computationally effective local descriptor is utilized. Textural and directional features are captured at the holistic and part based levels resulting in a robust face descriptor. The proposed method is tested on a number of standard test face datasets (ORL, XM2VTS, Extended Yale, CMU-PIE, AR, and FERET) for different scenarios and its performance is compared with several state-of-the-art techniques. •We propose a face descriptor based on a combination of directional and textural features.•Discriminative and nearly illumination invariant directional features are introduced.•Pyramid partitioning is used to capture local as well as holistic features.•Experiments performed on six standard face datasets shows robustness of proposed descriptor.•Algorithm achieves nearly perfect recognition rate on a number of standard face datasets.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Digital filters</subject><subject>Exact sciences and technology</subject><subject>Face classification</subject><subject>Face recognition</subject><subject>Face representation</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Local Binary Patterns (LBP)</subject><subject>Local Polynomial Approximation (LPA)</subject><subject>Mathematical analysis</subject><subject>Pattern recognition</subject><subject>Polynomials</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Surface layer</subject><subject>Telecommunications and information theory</subject><subject>Texture</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw-9CF5aZ5Im3b0IIn6B4EXPYTaZSpbarklX9N-bUvHo6Z1h3neGeYQ4Q6gQ0Fxuqi2NbnirJKCqEKsse2KBy0aVGmu5LxYACkslQR2Ko5Q2ANjkwULc35HjInJO92EMQ1_sUujfiuSo45I8bcfwyYUP2TKNqSuo98XIX-Mu5qZlygWnE3HQUpf49FePxevd7cvNQ_n0fP94c_1UOmVWY1kbMmvTNiBXugVvGrV0NTSa65q0NtJJD-sVIGtER3rdNKQk-bWutfG-BXUsLua92zh87DiN9j0kx11HPQ-7ZFGbBpagYJWt9Wx1cUgpcmu3MbxT_LYIduJmN3bmZiduFtFmybHz3ws0QWgj9S6kv6xcKpRST-uvZh_ndz8DR5tc4N7xzMr6Ifx_6Ad7-YTz</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Mehta, Rakesh</creator><creator>Yuan, Jirui</creator><creator>Egiazarian, Karen</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140501</creationdate><title>Face recognition using scale-adaptive directional and textural features</title><author>Mehta, Rakesh ; Yuan, Jirui ; Egiazarian, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Digital filters</topic><topic>Exact sciences and technology</topic><topic>Face classification</topic><topic>Face recognition</topic><topic>Face representation</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Local Binary Patterns (LBP)</topic><topic>Local Polynomial Approximation (LPA)</topic><topic>Mathematical analysis</topic><topic>Pattern recognition</topic><topic>Polynomials</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Surface layer</topic><topic>Telecommunications and information theory</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehta, Rakesh</creatorcontrib><creatorcontrib>Yuan, Jirui</creatorcontrib><creatorcontrib>Egiazarian, Karen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehta, Rakesh</au><au>Yuan, Jirui</au><au>Egiazarian, Karen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face recognition using scale-adaptive directional and textural features</atitle><jtitle>Pattern recognition</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>47</volume><issue>5</issue><spage>1846</spage><epage>1858</epage><pages>1846-1858</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>A novel approach to face recognition problem using directional and texture information from face images, is proposed in this paper. In order to capture the directionality, specially designed using local polynomial approximation technique, scale adaptive digital filters are used. For texture features extraction, a low dimensional and computationally effective local descriptor is utilized. Textural and directional features are captured at the holistic and part based levels resulting in a robust face descriptor. The proposed method is tested on a number of standard test face datasets (ORL, XM2VTS, Extended Yale, CMU-PIE, AR, and FERET) for different scenarios and its performance is compared with several state-of-the-art techniques. •We propose a face descriptor based on a combination of directional and textural features.•Discriminative and nearly illumination invariant directional features are introduced.•Pyramid partitioning is used to capture local as well as holistic features.•Experiments performed on six standard face datasets shows robustness of proposed descriptor.•Algorithm achieves nearly perfect recognition rate on a number of standard face datasets.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2013.11.013</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2014-05, Vol.47 (5), p.1846-1858
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_1567080309
source ScienceDirect Journals
subjects Applied sciences
Approximation
Detection, estimation, filtering, equalization, prediction
Digital filters
Exact sciences and technology
Face classification
Face recognition
Face representation
Image processing
Information, signal and communications theory
Local Binary Patterns (LBP)
Local Polynomial Approximation (LPA)
Mathematical analysis
Pattern recognition
Polynomials
Signal and communications theory
Signal processing
Signal, noise
Surface layer
Telecommunications and information theory
Texture
title Face recognition using scale-adaptive directional and textural features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20recognition%20using%20scale-adaptive%20directional%20and%20textural%20features&rft.jtitle=Pattern%20recognition&rft.au=Mehta,%20Rakesh&rft.date=2014-05-01&rft.volume=47&rft.issue=5&rft.spage=1846&rft.epage=1858&rft.pages=1846-1858&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2013.11.013&rft_dat=%3Cproquest_cross%3E1567080309%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-46a6b6f70295f0d6738c4075e44a5562c2d0b901e511ca5b77a32adb5456ddf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567080309&rft_id=info:pmid/&rfr_iscdi=true