Loading…
CALA: An unsupervised URL-based web page classification system
Unsupervised web page classification refers to the problem of clustering the pages in a web site so that each cluster includes a set of web pages that can be classified using a unique class. The existing proposals to perform web page classification do not fulfill a number of requirements that would...
Saved in:
Published in: | Knowledge-based systems 2014-02, Vol.57, p.168-180 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-d6c441edb361af93b139f0bc1f12dbbab0a6d6919eaa913187af40044abf55a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-d6c441edb361af93b139f0bc1f12dbbab0a6d6919eaa913187af40044abf55a33 |
container_end_page | 180 |
container_issue | |
container_start_page | 168 |
container_title | Knowledge-based systems |
container_volume | 57 |
creator | Hernández, Inma Rivero, Carlos R. Ruiz, David Corchuelo, Rafael |
description | Unsupervised web page classification refers to the problem of clustering the pages in a web site so that each cluster includes a set of web pages that can be classified using a unique class. The existing proposals to perform web page classification do not fulfill a number of requirements that would make them suitable for enterprise web information integration, namely: to be based on a lightweight crawling, so as to avoid interfering with the normal operation of the web site, to be unsupervised, which avoids the need for a training set of pre-classified pages, or to use features from outside the page to be classified, which avoids having to download it. In this article, we propose CALA, a new automated proposal to generate URL-based web page classifiers. Our proposal builds a number of URL patterns that represent the different classes of pages in a web site, so further pages can be classified by matching their URLs to the patterns. Its salient features are that it fulfills all of the previous requirements, and it has been validated by a number of experiments using real-world, top-visited web sites. Our validation proves that CALA is very effective and efficient in practice. |
doi_str_mv | 10.1016/j.knosys.2013.12.019 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567086688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705113003997</els_id><sourcerecordid>1567086688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-d6c441edb361af93b139f0bc1f12dbbab0a6d6919eaa913187af40044abf55a33</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEuXxDzjkyCVhN3HcmEOlquIlVUJC9GzZzhq5pEmIk6L-e1KFM-K0e5iZ3fkYu0FIEFDcbZPPugmHkKSAWYJpAihP2AyLeRrPOchTNgOZQzyHHM_ZRQhbAEhTLGZssVqul_fRso6GOgwtdXsfqIw2b-vY6OP2TSZq9QdFttIheOet7n1TR-O5nnZX7MzpKtD177xkm8eH99VzvH59ehmjY8ux6ONSWM6RSpMJ1E5mBjPpwFh0mJbGaANalEKiJK0lZuPj2nEAzrVxea6z7JLdTrlt13wNFHq188FSVemamiEozMUcCiGK4n_SLE9zHKV8ktquCaEjp9rO73R3UAjqSFZt1URWHckqTNVIdrQtJhuNjfeeOhWsp9pS6TuyvSob_3fAD0pXguM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567035251</pqid></control><display><type>article</type><title>CALA: An unsupervised URL-based web page classification system</title><source>Library & Information Science Abstracts (LISA)</source><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hernández, Inma ; Rivero, Carlos R. ; Ruiz, David ; Corchuelo, Rafael</creator><creatorcontrib>Hernández, Inma ; Rivero, Carlos R. ; Ruiz, David ; Corchuelo, Rafael</creatorcontrib><description>Unsupervised web page classification refers to the problem of clustering the pages in a web site so that each cluster includes a set of web pages that can be classified using a unique class. The existing proposals to perform web page classification do not fulfill a number of requirements that would make them suitable for enterprise web information integration, namely: to be based on a lightweight crawling, so as to avoid interfering with the normal operation of the web site, to be unsupervised, which avoids the need for a training set of pre-classified pages, or to use features from outside the page to be classified, which avoids having to download it. In this article, we propose CALA, a new automated proposal to generate URL-based web page classifiers. Our proposal builds a number of URL patterns that represent the different classes of pages in a web site, so further pages can be classified by matching their URLs to the patterns. Its salient features are that it fulfills all of the previous requirements, and it has been validated by a number of experiments using real-world, top-visited web sites. Our validation proves that CALA is very effective and efficient in practice.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2013.12.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Classification ; Clustering ; Clusters ; Construction ; Enterprise web information integration ; Knowledge base ; Methods ; Proposals ; Uniform Resource Locators ; URL classification ; URL patterns ; Web page classification ; Web page clustering ; Web pages ; Websites ; Weight reduction ; World Wide Web</subject><ispartof>Knowledge-based systems, 2014-02, Vol.57, p.168-180</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-d6c441edb361af93b139f0bc1f12dbbab0a6d6919eaa913187af40044abf55a33</citedby><cites>FETCH-LOGICAL-c418t-d6c441edb361af93b139f0bc1f12dbbab0a6d6919eaa913187af40044abf55a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34136</link.rule.ids></links><search><creatorcontrib>Hernández, Inma</creatorcontrib><creatorcontrib>Rivero, Carlos R.</creatorcontrib><creatorcontrib>Ruiz, David</creatorcontrib><creatorcontrib>Corchuelo, Rafael</creatorcontrib><title>CALA: An unsupervised URL-based web page classification system</title><title>Knowledge-based systems</title><description>Unsupervised web page classification refers to the problem of clustering the pages in a web site so that each cluster includes a set of web pages that can be classified using a unique class. The existing proposals to perform web page classification do not fulfill a number of requirements that would make them suitable for enterprise web information integration, namely: to be based on a lightweight crawling, so as to avoid interfering with the normal operation of the web site, to be unsupervised, which avoids the need for a training set of pre-classified pages, or to use features from outside the page to be classified, which avoids having to download it. In this article, we propose CALA, a new automated proposal to generate URL-based web page classifiers. Our proposal builds a number of URL patterns that represent the different classes of pages in a web site, so further pages can be classified by matching their URLs to the patterns. Its salient features are that it fulfills all of the previous requirements, and it has been validated by a number of experiments using real-world, top-visited web sites. Our validation proves that CALA is very effective and efficient in practice.</description><subject>Classification</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Construction</subject><subject>Enterprise web information integration</subject><subject>Knowledge base</subject><subject>Methods</subject><subject>Proposals</subject><subject>Uniform Resource Locators</subject><subject>URL classification</subject><subject>URL patterns</subject><subject>Web page classification</subject><subject>Web page clustering</subject><subject>Web pages</subject><subject>Websites</subject><subject>Weight reduction</subject><subject>World Wide Web</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNqNkEtPwzAQhC0EEuXxDzjkyCVhN3HcmEOlquIlVUJC9GzZzhq5pEmIk6L-e1KFM-K0e5iZ3fkYu0FIEFDcbZPPugmHkKSAWYJpAihP2AyLeRrPOchTNgOZQzyHHM_ZRQhbAEhTLGZssVqul_fRso6GOgwtdXsfqIw2b-vY6OP2TSZq9QdFttIheOet7n1TR-O5nnZX7MzpKtD177xkm8eH99VzvH59ehmjY8ux6ONSWM6RSpMJ1E5mBjPpwFh0mJbGaANalEKiJK0lZuPj2nEAzrVxea6z7JLdTrlt13wNFHq188FSVemamiEozMUcCiGK4n_SLE9zHKV8ktquCaEjp9rO73R3UAjqSFZt1URWHckqTNVIdrQtJhuNjfeeOhWsp9pS6TuyvSob_3fAD0pXguM</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Hernández, Inma</creator><creator>Rivero, Carlos R.</creator><creator>Ruiz, David</creator><creator>Corchuelo, Rafael</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BP</scope><scope>E3H</scope><scope>F2A</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201402</creationdate><title>CALA: An unsupervised URL-based web page classification system</title><author>Hernández, Inma ; Rivero, Carlos R. ; Ruiz, David ; Corchuelo, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-d6c441edb361af93b139f0bc1f12dbbab0a6d6919eaa913187af40044abf55a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classification</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Construction</topic><topic>Enterprise web information integration</topic><topic>Knowledge base</topic><topic>Methods</topic><topic>Proposals</topic><topic>Uniform Resource Locators</topic><topic>URL classification</topic><topic>URL patterns</topic><topic>Web page classification</topic><topic>Web page clustering</topic><topic>Web pages</topic><topic>Websites</topic><topic>Weight reduction</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández, Inma</creatorcontrib><creatorcontrib>Rivero, Carlos R.</creatorcontrib><creatorcontrib>Ruiz, David</creatorcontrib><creatorcontrib>Corchuelo, Rafael</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA) - CILIP Edition</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández, Inma</au><au>Rivero, Carlos R.</au><au>Ruiz, David</au><au>Corchuelo, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CALA: An unsupervised URL-based web page classification system</atitle><jtitle>Knowledge-based systems</jtitle><date>2014-02</date><risdate>2014</risdate><volume>57</volume><spage>168</spage><epage>180</epage><pages>168-180</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Unsupervised web page classification refers to the problem of clustering the pages in a web site so that each cluster includes a set of web pages that can be classified using a unique class. The existing proposals to perform web page classification do not fulfill a number of requirements that would make them suitable for enterprise web information integration, namely: to be based on a lightweight crawling, so as to avoid interfering with the normal operation of the web site, to be unsupervised, which avoids the need for a training set of pre-classified pages, or to use features from outside the page to be classified, which avoids having to download it. In this article, we propose CALA, a new automated proposal to generate URL-based web page classifiers. Our proposal builds a number of URL patterns that represent the different classes of pages in a web site, so further pages can be classified by matching their URLs to the patterns. Its salient features are that it fulfills all of the previous requirements, and it has been validated by a number of experiments using real-world, top-visited web sites. Our validation proves that CALA is very effective and efficient in practice.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2013.12.019</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2014-02, Vol.57, p.168-180 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567086688 |
source | Library & Information Science Abstracts (LISA); ScienceDirect Freedom Collection 2022-2024 |
subjects | Classification Clustering Clusters Construction Enterprise web information integration Knowledge base Methods Proposals Uniform Resource Locators URL classification URL patterns Web page classification Web page clustering Web pages Websites Weight reduction World Wide Web |
title | CALA: An unsupervised URL-based web page classification system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CALA:%20An%20unsupervised%20URL-based%20web%20page%20classification%20system&rft.jtitle=Knowledge-based%20systems&rft.au=Hern%C3%A1ndez,%20Inma&rft.date=2014-02&rft.volume=57&rft.spage=168&rft.epage=180&rft.pages=168-180&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2013.12.019&rft_dat=%3Cproquest_cross%3E1567086688%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-d6c441edb361af93b139f0bc1f12dbbab0a6d6919eaa913187af40044abf55a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567035251&rft_id=info:pmid/&rfr_iscdi=true |