Loading…

Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement

Background subtraction is the classical approach to differentiate moving objects in a scene from the static background when the camera is fixed. If the fixed camera assumption does not hold, a frame registration step is followed by the background subtraction. However, this registration step cannot p...

Full description

Saved in:
Bibliographic Details
Published in:Machine vision and applications 2014-08, Vol.25 (6), p.1573-1584
Main Authors: Romanoni, Andrea, Matteucci, Matteo, Sorrenti, Domenico G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723
cites cdi_FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723
container_end_page 1584
container_issue 6
container_start_page 1573
container_title Machine vision and applications
container_volume 25
creator Romanoni, Andrea
Matteucci, Matteo
Sorrenti, Domenico G.
description Background subtraction is the classical approach to differentiate moving objects in a scene from the static background when the camera is fixed. If the fixed camera assumption does not hold, a frame registration step is followed by the background subtraction. However, this registration step cannot perfectly compensate camera motion, thus errors like translations of pixels from their true registered position occur. In this paper, we overcome these errors with a simple, but effective background subtraction algorithm that combines Temporal and Spatio-Temporal approaches. The former models the temporal intensity distribution of each individual pixel. The latter classifies foreground and background pixels, taking into account the intensity distribution of each pixels’ neighborhood. The experimental results show that our algorithm outperforms the state-of-the-art systems in the presence of jitter, in spite of its simplicity.
doi_str_mv 10.1007/s00138-013-0587-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567087477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567087477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723</originalsourceid><addsrcrecordid>eNp1kV9LHTEQxYNU8Fb9AL4FSqEv206yu_nz2Eq1guCD-hxmc2evq7vJNtkt-O0buWKh4MskTH5z5pDD2JmArwJAf8sAojZVKRW0Rlf2gG1EU8tKaGU_sA3Ycjdg5RH7mPMjADRaNxsWfqB_2qW4hi3Pa7ck9MsQA--euY9TN4Qh7PgdTXNMOHIs1O2Mhajeeg9DXuIu4ZT5EPjyQHxOlCl44rHnHidKyKf4hyYKywk77HHMdPp6HrP7i59357-q65vLq_Pv15VvrFyq1mw70VvqQUBdC2_bDiWgsMr30GKt2q0XRvmtIdNp2yhA7KwVPWlfey3rY_Zlrzun-HulvLhpyJ7GEQPFNTvRKg1Glz8o6Kf_0Me4plDcOSmVVA2UTYUSe8qnmHOi3s1pmDA9OwHuJQG3T8CV4l4ScLbMfH5Vxuxx7BMGP-S3QWmUEKaGwsk9l8tT2FH65-B98b9vFZay</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262640186</pqid></control><display><type>article</type><title>Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement</title><source>Springer Nature</source><creator>Romanoni, Andrea ; Matteucci, Matteo ; Sorrenti, Domenico G.</creator><creatorcontrib>Romanoni, Andrea ; Matteucci, Matteo ; Sorrenti, Domenico G.</creatorcontrib><description>Background subtraction is the classical approach to differentiate moving objects in a scene from the static background when the camera is fixed. If the fixed camera assumption does not hold, a frame registration step is followed by the background subtraction. However, this registration step cannot perfectly compensate camera motion, thus errors like translations of pixels from their true registered position occur. In this paper, we overcome these errors with a simple, but effective background subtraction algorithm that combines Temporal and Spatio-Temporal approaches. The former models the temporal intensity distribution of each individual pixel. The latter classifies foreground and background pixels, taking into account the intensity distribution of each pixels’ neighborhood. The experimental results show that our algorithm outperforms the state-of-the-art systems in the presence of jitter, in spite of its simplicity.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-013-0587-9</identifier><identifier>CODEN: MVAPEO</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Cameras ; Classification ; Communications Engineering ; Computer Science ; Computer science; control theory; systems ; Errors ; Exact sciences and technology ; Histograms ; Image Processing and Computer Vision ; Movement ; Networks ; Original Paper ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry ; Pixels ; Subtraction ; Temporal logic ; Translations ; Vibration ; Vision systems</subject><ispartof>Machine vision and applications, 2014-08, Vol.25 (6), p.1573-1584</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><rights>Machine Vision and Applications is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723</citedby><cites>FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28611830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Romanoni, Andrea</creatorcontrib><creatorcontrib>Matteucci, Matteo</creatorcontrib><creatorcontrib>Sorrenti, Domenico G.</creatorcontrib><title>Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>Background subtraction is the classical approach to differentiate moving objects in a scene from the static background when the camera is fixed. If the fixed camera assumption does not hold, a frame registration step is followed by the background subtraction. However, this registration step cannot perfectly compensate camera motion, thus errors like translations of pixels from their true registered position occur. In this paper, we overcome these errors with a simple, but effective background subtraction algorithm that combines Temporal and Spatio-Temporal approaches. The former models the temporal intensity distribution of each individual pixel. The latter classifies foreground and background pixels, taking into account the intensity distribution of each pixels’ neighborhood. The experimental results show that our algorithm outperforms the state-of-the-art systems in the presence of jitter, in spite of its simplicity.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>Classification</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Histograms</subject><subject>Image Processing and Computer Vision</subject><subject>Movement</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pixels</subject><subject>Subtraction</subject><subject>Temporal logic</subject><subject>Translations</subject><subject>Vibration</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kV9LHTEQxYNU8Fb9AL4FSqEv206yu_nz2Eq1guCD-hxmc2evq7vJNtkt-O0buWKh4MskTH5z5pDD2JmArwJAf8sAojZVKRW0Rlf2gG1EU8tKaGU_sA3Ycjdg5RH7mPMjADRaNxsWfqB_2qW4hi3Pa7ck9MsQA--euY9TN4Qh7PgdTXNMOHIs1O2Mhajeeg9DXuIu4ZT5EPjyQHxOlCl44rHnHidKyKf4hyYKywk77HHMdPp6HrP7i59357-q65vLq_Pv15VvrFyq1mw70VvqQUBdC2_bDiWgsMr30GKt2q0XRvmtIdNp2yhA7KwVPWlfey3rY_Zlrzun-HulvLhpyJ7GEQPFNTvRKg1Glz8o6Kf_0Me4plDcOSmVVA2UTYUSe8qnmHOi3s1pmDA9OwHuJQG3T8CV4l4ScLbMfH5Vxuxx7BMGP-S3QWmUEKaGwsk9l8tT2FH65-B98b9vFZay</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Romanoni, Andrea</creator><creator>Matteucci, Matteo</creator><creator>Sorrenti, Domenico G.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140801</creationdate><title>Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement</title><author>Romanoni, Andrea ; Matteucci, Matteo ; Sorrenti, Domenico G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>Classification</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Histograms</topic><topic>Image Processing and Computer Vision</topic><topic>Movement</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pixels</topic><topic>Subtraction</topic><topic>Temporal logic</topic><topic>Translations</topic><topic>Vibration</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanoni, Andrea</creatorcontrib><creatorcontrib>Matteucci, Matteo</creatorcontrib><creatorcontrib>Sorrenti, Domenico G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanoni, Andrea</au><au>Matteucci, Matteo</au><au>Sorrenti, Domenico G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>25</volume><issue>6</issue><spage>1573</spage><epage>1584</epage><pages>1573-1584</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><coden>MVAPEO</coden><abstract>Background subtraction is the classical approach to differentiate moving objects in a scene from the static background when the camera is fixed. If the fixed camera assumption does not hold, a frame registration step is followed by the background subtraction. However, this registration step cannot perfectly compensate camera motion, thus errors like translations of pixels from their true registered position occur. In this paper, we overcome these errors with a simple, but effective background subtraction algorithm that combines Temporal and Spatio-Temporal approaches. The former models the temporal intensity distribution of each individual pixel. The latter classifies foreground and background pixels, taking into account the intensity distribution of each pixels’ neighborhood. The experimental results show that our algorithm outperforms the state-of-the-art systems in the presence of jitter, in spite of its simplicity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-013-0587-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0932-8092
ispartof Machine vision and applications, 2014-08, Vol.25 (6), p.1573-1584
issn 0932-8092
1432-1769
language eng
recordid cdi_proquest_miscellaneous_1567087477
source Springer Nature
subjects Algorithms
Applied sciences
Artificial intelligence
Cameras
Classification
Communications Engineering
Computer Science
Computer science
control theory
systems
Errors
Exact sciences and technology
Histograms
Image Processing and Computer Vision
Movement
Networks
Original Paper
Pattern Recognition
Pattern recognition. Digital image processing. Computational geometry
Pixels
Subtraction
Temporal logic
Translations
Vibration
Vision systems
title Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background%20subtraction%20by%20combining%20Temporal%20and%20Spatio-Temporal%20histograms%20in%20the%20presence%20of%20camera%20movement&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Romanoni,%20Andrea&rft.date=2014-08-01&rft.volume=25&rft.issue=6&rft.spage=1573&rft.epage=1584&rft.pages=1573-1584&rft.issn=0932-8092&rft.eissn=1432-1769&rft.coden=MVAPEO&rft_id=info:doi/10.1007/s00138-013-0587-9&rft_dat=%3Cproquest_cross%3E1567087477%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262640186&rft_id=info:pmid/&rfr_iscdi=true