Loading…
Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement
Background subtraction is the classical approach to differentiate moving objects in a scene from the static background when the camera is fixed. If the fixed camera assumption does not hold, a frame registration step is followed by the background subtraction. However, this registration step cannot p...
Saved in:
Published in: | Machine vision and applications 2014-08, Vol.25 (6), p.1573-1584 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723 |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723 |
container_end_page | 1584 |
container_issue | 6 |
container_start_page | 1573 |
container_title | Machine vision and applications |
container_volume | 25 |
creator | Romanoni, Andrea Matteucci, Matteo Sorrenti, Domenico G. |
description | Background subtraction is the classical approach to differentiate moving objects in a scene from the static background when the camera is fixed. If the fixed camera assumption does not hold, a frame registration step is followed by the background subtraction. However, this registration step cannot perfectly compensate camera motion, thus errors like translations of pixels from their true registered position occur. In this paper, we overcome these errors with a simple, but effective background subtraction algorithm that combines Temporal and Spatio-Temporal approaches. The former models the temporal intensity distribution of each individual pixel. The latter classifies foreground and background pixels, taking into account the intensity distribution of each pixels’ neighborhood. The experimental results show that our algorithm outperforms the state-of-the-art systems in the presence of jitter, in spite of its simplicity. |
doi_str_mv | 10.1007/s00138-013-0587-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567087477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567087477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723</originalsourceid><addsrcrecordid>eNp1kV9LHTEQxYNU8Fb9AL4FSqEv206yu_nz2Eq1guCD-hxmc2evq7vJNtkt-O0buWKh4MskTH5z5pDD2JmArwJAf8sAojZVKRW0Rlf2gG1EU8tKaGU_sA3Ycjdg5RH7mPMjADRaNxsWfqB_2qW4hi3Pa7ck9MsQA--euY9TN4Qh7PgdTXNMOHIs1O2Mhajeeg9DXuIu4ZT5EPjyQHxOlCl44rHnHidKyKf4hyYKywk77HHMdPp6HrP7i59357-q65vLq_Pv15VvrFyq1mw70VvqQUBdC2_bDiWgsMr30GKt2q0XRvmtIdNp2yhA7KwVPWlfey3rY_Zlrzun-HulvLhpyJ7GEQPFNTvRKg1Glz8o6Kf_0Me4plDcOSmVVA2UTYUSe8qnmHOi3s1pmDA9OwHuJQG3T8CV4l4ScLbMfH5Vxuxx7BMGP-S3QWmUEKaGwsk9l8tT2FH65-B98b9vFZay</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262640186</pqid></control><display><type>article</type><title>Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement</title><source>Springer Nature</source><creator>Romanoni, Andrea ; Matteucci, Matteo ; Sorrenti, Domenico G.</creator><creatorcontrib>Romanoni, Andrea ; Matteucci, Matteo ; Sorrenti, Domenico G.</creatorcontrib><description>Background subtraction is the classical approach to differentiate moving objects in a scene from the static background when the camera is fixed. If the fixed camera assumption does not hold, a frame registration step is followed by the background subtraction. However, this registration step cannot perfectly compensate camera motion, thus errors like translations of pixels from their true registered position occur. In this paper, we overcome these errors with a simple, but effective background subtraction algorithm that combines Temporal and Spatio-Temporal approaches. The former models the temporal intensity distribution of each individual pixel. The latter classifies foreground and background pixels, taking into account the intensity distribution of each pixels’ neighborhood. The experimental results show that our algorithm outperforms the state-of-the-art systems in the presence of jitter, in spite of its simplicity.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-013-0587-9</identifier><identifier>CODEN: MVAPEO</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Cameras ; Classification ; Communications Engineering ; Computer Science ; Computer science; control theory; systems ; Errors ; Exact sciences and technology ; Histograms ; Image Processing and Computer Vision ; Movement ; Networks ; Original Paper ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry ; Pixels ; Subtraction ; Temporal logic ; Translations ; Vibration ; Vision systems</subject><ispartof>Machine vision and applications, 2014-08, Vol.25 (6), p.1573-1584</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><rights>Machine Vision and Applications is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723</citedby><cites>FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28611830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Romanoni, Andrea</creatorcontrib><creatorcontrib>Matteucci, Matteo</creatorcontrib><creatorcontrib>Sorrenti, Domenico G.</creatorcontrib><title>Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>Background subtraction is the classical approach to differentiate moving objects in a scene from the static background when the camera is fixed. If the fixed camera assumption does not hold, a frame registration step is followed by the background subtraction. However, this registration step cannot perfectly compensate camera motion, thus errors like translations of pixels from their true registered position occur. In this paper, we overcome these errors with a simple, but effective background subtraction algorithm that combines Temporal and Spatio-Temporal approaches. The former models the temporal intensity distribution of each individual pixel. The latter classifies foreground and background pixels, taking into account the intensity distribution of each pixels’ neighborhood. The experimental results show that our algorithm outperforms the state-of-the-art systems in the presence of jitter, in spite of its simplicity.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>Classification</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Histograms</subject><subject>Image Processing and Computer Vision</subject><subject>Movement</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pixels</subject><subject>Subtraction</subject><subject>Temporal logic</subject><subject>Translations</subject><subject>Vibration</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kV9LHTEQxYNU8Fb9AL4FSqEv206yu_nz2Eq1guCD-hxmc2evq7vJNtkt-O0buWKh4MskTH5z5pDD2JmArwJAf8sAojZVKRW0Rlf2gG1EU8tKaGU_sA3Ycjdg5RH7mPMjADRaNxsWfqB_2qW4hi3Pa7ck9MsQA--euY9TN4Qh7PgdTXNMOHIs1O2Mhajeeg9DXuIu4ZT5EPjyQHxOlCl44rHnHidKyKf4hyYKywk77HHMdPp6HrP7i59357-q65vLq_Pv15VvrFyq1mw70VvqQUBdC2_bDiWgsMr30GKt2q0XRvmtIdNp2yhA7KwVPWlfey3rY_Zlrzun-HulvLhpyJ7GEQPFNTvRKg1Glz8o6Kf_0Me4plDcOSmVVA2UTYUSe8qnmHOi3s1pmDA9OwHuJQG3T8CV4l4ScLbMfH5Vxuxx7BMGP-S3QWmUEKaGwsk9l8tT2FH65-B98b9vFZay</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Romanoni, Andrea</creator><creator>Matteucci, Matteo</creator><creator>Sorrenti, Domenico G.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140801</creationdate><title>Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement</title><author>Romanoni, Andrea ; Matteucci, Matteo ; Sorrenti, Domenico G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>Classification</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Histograms</topic><topic>Image Processing and Computer Vision</topic><topic>Movement</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pixels</topic><topic>Subtraction</topic><topic>Temporal logic</topic><topic>Translations</topic><topic>Vibration</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanoni, Andrea</creatorcontrib><creatorcontrib>Matteucci, Matteo</creatorcontrib><creatorcontrib>Sorrenti, Domenico G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanoni, Andrea</au><au>Matteucci, Matteo</au><au>Sorrenti, Domenico G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>25</volume><issue>6</issue><spage>1573</spage><epage>1584</epage><pages>1573-1584</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><coden>MVAPEO</coden><abstract>Background subtraction is the classical approach to differentiate moving objects in a scene from the static background when the camera is fixed. If the fixed camera assumption does not hold, a frame registration step is followed by the background subtraction. However, this registration step cannot perfectly compensate camera motion, thus errors like translations of pixels from their true registered position occur. In this paper, we overcome these errors with a simple, but effective background subtraction algorithm that combines Temporal and Spatio-Temporal approaches. The former models the temporal intensity distribution of each individual pixel. The latter classifies foreground and background pixels, taking into account the intensity distribution of each pixels’ neighborhood. The experimental results show that our algorithm outperforms the state-of-the-art systems in the presence of jitter, in spite of its simplicity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-013-0587-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2014-08, Vol.25 (6), p.1573-1584 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567087477 |
source | Springer Nature |
subjects | Algorithms Applied sciences Artificial intelligence Cameras Classification Communications Engineering Computer Science Computer science control theory systems Errors Exact sciences and technology Histograms Image Processing and Computer Vision Movement Networks Original Paper Pattern Recognition Pattern recognition. Digital image processing. Computational geometry Pixels Subtraction Temporal logic Translations Vibration Vision systems |
title | Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background%20subtraction%20by%20combining%20Temporal%20and%20Spatio-Temporal%20histograms%20in%20the%20presence%20of%20camera%20movement&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Romanoni,%20Andrea&rft.date=2014-08-01&rft.volume=25&rft.issue=6&rft.spage=1573&rft.epage=1584&rft.pages=1573-1584&rft.issn=0932-8092&rft.eissn=1432-1769&rft.coden=MVAPEO&rft_id=info:doi/10.1007/s00138-013-0587-9&rft_dat=%3Cproquest_cross%3E1567087477%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-58db1f9ef010331c95ba20a196cf05a365dc186cd8e8b79460aab991fe7c3c723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262640186&rft_id=info:pmid/&rfr_iscdi=true |