Loading…
Multithreaded Parallel Dual Population Genetic Algorithm (MPDPGA) for unconstrained function optimizations on multi-core system
Various problems viz. population diversity problem, premature convergence problem and curse of dimensionality problem, are associated with Genetic Algorithm (GA). Dual Population GA (DPGA) helps to provide additional population diversity to the main population by means of crossbreeding between the m...
Saved in:
Published in: | Applied mathematics and computation 2014-09, Vol.243, p.936-949 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c330t-72786d2ead8e96fe850b417700e7a1e354fc662acc768136267f574e27ff230f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c330t-72786d2ead8e96fe850b417700e7a1e354fc662acc768136267f574e27ff230f3 |
container_end_page | 949 |
container_issue | |
container_start_page | 936 |
container_title | Applied mathematics and computation |
container_volume | 243 |
creator | Umbarkar, A.J. Joshi, M.S. Hong, Wei-Chiang |
description | Various problems viz. population diversity problem, premature convergence problem and curse of dimensionality problem, are associated with Genetic Algorithm (GA). Dual Population GA (DPGA) helps to provide additional population diversity to the main population by means of crossbreeding between the main population and reserve population. This helps to solve the problem of premature convergence and helps in early convergence of the algorithm. The binary encoded Multithreaded Parallel DPGA (MPDPGA) is proposed in this paper to solve the problems of population diversity and premature convergence. The experimental results show that, the performance (mean, standard deviation and standard error of mean), student t-test, mean function evaluation and success rate of MPDPGA is better than serial DPGA (SDPGA) and simple GA (SGA). |
doi_str_mv | 10.1016/j.amc.2014.06.033 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567090821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314008698</els_id><sourcerecordid>1567090821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-72786d2ead8e96fe850b417700e7a1e354fc662acc768136267f574e27ff230f3</originalsourceid><addsrcrecordid>eNp9kDFv2zAQhYmiAeqm-QHdODqD1KMokTI6GU7iFkgQD8lMsNSxpUGJLkkVSJf89dBx5kyHO7zv3d0j5CuDmgET3_a1Hk3dAGtrEDVw_oEsWC951Yl29ZEsAFai4gD8E_mc0h4ApGDtgjzfzT67_CeiHnCgOx219-jp1aw93YXD7HV2YaJbnDA7Q9f-d4hFP9Ll3e5qt11fUhsinScTppSjdlNxsaV9pcIhu9H9f7VItAzG47bKhIg0PaWM4xdyZrVPePFWz8njzfXD5kd1e7_9uVnfVoZzyJVsZC-GphzZ40pY7Dv41TIpAVBqhrxrrRGi0cZI0TMuGiFtJ1tspLUNB8vPyfLke4jh74wpq9Elg97rCcOcFOuEhBX0DStSdpKaGFKKaNUhulHHJ8VAHcNWe1XCVsewFQhVwi7M9xOD5Yd_DqNKxuFkcHARTVZDcO_QL70liO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567090821</pqid></control><display><type>article</type><title>Multithreaded Parallel Dual Population Genetic Algorithm (MPDPGA) for unconstrained function optimizations on multi-core system</title><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>ScienceDirect: Computer Science Backfile</source><creator>Umbarkar, A.J. ; Joshi, M.S. ; Hong, Wei-Chiang</creator><creatorcontrib>Umbarkar, A.J. ; Joshi, M.S. ; Hong, Wei-Chiang</creatorcontrib><description>Various problems viz. population diversity problem, premature convergence problem and curse of dimensionality problem, are associated with Genetic Algorithm (GA). Dual Population GA (DPGA) helps to provide additional population diversity to the main population by means of crossbreeding between the main population and reserve population. This helps to solve the problem of premature convergence and helps in early convergence of the algorithm. The binary encoded Multithreaded Parallel DPGA (MPDPGA) is proposed in this paper to solve the problems of population diversity and premature convergence. The experimental results show that, the performance (mean, standard deviation and standard error of mean), student t-test, mean function evaluation and success rate of MPDPGA is better than serial DPGA (SDPGA) and simple GA (SGA).</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.06.033</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Convergence ; Diversity in GA ; DPGA ; Dual Population Genetic Algorithm ; Function optimization ; Genetic algorithms ; Mathematical analysis ; Mathematical models ; Optimization ; Parallel Dual-Population GA ; Premature convergence ; Reserves ; Serials ; Standard deviation</subject><ispartof>Applied mathematics and computation, 2014-09, Vol.243, p.936-949</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-72786d2ead8e96fe850b417700e7a1e354fc662acc768136267f574e27ff230f3</citedby><cites>FETCH-LOGICAL-c330t-72786d2ead8e96fe850b417700e7a1e354fc662acc768136267f574e27ff230f3</cites><orcidid>0000-0002-3001-2921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300314008698$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3416,3551,27901,27902,45948,45978</link.rule.ids></links><search><creatorcontrib>Umbarkar, A.J.</creatorcontrib><creatorcontrib>Joshi, M.S.</creatorcontrib><creatorcontrib>Hong, Wei-Chiang</creatorcontrib><title>Multithreaded Parallel Dual Population Genetic Algorithm (MPDPGA) for unconstrained function optimizations on multi-core system</title><title>Applied mathematics and computation</title><description>Various problems viz. population diversity problem, premature convergence problem and curse of dimensionality problem, are associated with Genetic Algorithm (GA). Dual Population GA (DPGA) helps to provide additional population diversity to the main population by means of crossbreeding between the main population and reserve population. This helps to solve the problem of premature convergence and helps in early convergence of the algorithm. The binary encoded Multithreaded Parallel DPGA (MPDPGA) is proposed in this paper to solve the problems of population diversity and premature convergence. The experimental results show that, the performance (mean, standard deviation and standard error of mean), student t-test, mean function evaluation and success rate of MPDPGA is better than serial DPGA (SDPGA) and simple GA (SGA).</description><subject>Convergence</subject><subject>Diversity in GA</subject><subject>DPGA</subject><subject>Dual Population Genetic Algorithm</subject><subject>Function optimization</subject><subject>Genetic algorithms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parallel Dual-Population GA</subject><subject>Premature convergence</subject><subject>Reserves</subject><subject>Serials</subject><subject>Standard deviation</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kDFv2zAQhYmiAeqm-QHdODqD1KMokTI6GU7iFkgQD8lMsNSxpUGJLkkVSJf89dBx5kyHO7zv3d0j5CuDmgET3_a1Hk3dAGtrEDVw_oEsWC951Yl29ZEsAFai4gD8E_mc0h4ApGDtgjzfzT67_CeiHnCgOx219-jp1aw93YXD7HV2YaJbnDA7Q9f-d4hFP9Ll3e5qt11fUhsinScTppSjdlNxsaV9pcIhu9H9f7VItAzG47bKhIg0PaWM4xdyZrVPePFWz8njzfXD5kd1e7_9uVnfVoZzyJVsZC-GphzZ40pY7Dv41TIpAVBqhrxrrRGi0cZI0TMuGiFtJ1tspLUNB8vPyfLke4jh74wpq9Elg97rCcOcFOuEhBX0DStSdpKaGFKKaNUhulHHJ8VAHcNWe1XCVsewFQhVwi7M9xOD5Yd_DqNKxuFkcHARTVZDcO_QL70liO4</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Umbarkar, A.J.</creator><creator>Joshi, M.S.</creator><creator>Hong, Wei-Chiang</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3001-2921</orcidid></search><sort><creationdate>20140915</creationdate><title>Multithreaded Parallel Dual Population Genetic Algorithm (MPDPGA) for unconstrained function optimizations on multi-core system</title><author>Umbarkar, A.J. ; Joshi, M.S. ; Hong, Wei-Chiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-72786d2ead8e96fe850b417700e7a1e354fc662acc768136267f574e27ff230f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Convergence</topic><topic>Diversity in GA</topic><topic>DPGA</topic><topic>Dual Population Genetic Algorithm</topic><topic>Function optimization</topic><topic>Genetic algorithms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parallel Dual-Population GA</topic><topic>Premature convergence</topic><topic>Reserves</topic><topic>Serials</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umbarkar, A.J.</creatorcontrib><creatorcontrib>Joshi, M.S.</creatorcontrib><creatorcontrib>Hong, Wei-Chiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umbarkar, A.J.</au><au>Joshi, M.S.</au><au>Hong, Wei-Chiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multithreaded Parallel Dual Population Genetic Algorithm (MPDPGA) for unconstrained function optimizations on multi-core system</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-09-15</date><risdate>2014</risdate><volume>243</volume><spage>936</spage><epage>949</epage><pages>936-949</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>Various problems viz. population diversity problem, premature convergence problem and curse of dimensionality problem, are associated with Genetic Algorithm (GA). Dual Population GA (DPGA) helps to provide additional population diversity to the main population by means of crossbreeding between the main population and reserve population. This helps to solve the problem of premature convergence and helps in early convergence of the algorithm. The binary encoded Multithreaded Parallel DPGA (MPDPGA) is proposed in this paper to solve the problems of population diversity and premature convergence. The experimental results show that, the performance (mean, standard deviation and standard error of mean), student t-test, mean function evaluation and success rate of MPDPGA is better than serial DPGA (SDPGA) and simple GA (SGA).</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.06.033</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3001-2921</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2014-09, Vol.243, p.936-949 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567090821 |
source | Elsevier; Backfile Package - Mathematics (Legacy) [YMT]; ScienceDirect: Computer Science Backfile |
subjects | Convergence Diversity in GA DPGA Dual Population Genetic Algorithm Function optimization Genetic algorithms Mathematical analysis Mathematical models Optimization Parallel Dual-Population GA Premature convergence Reserves Serials Standard deviation |
title | Multithreaded Parallel Dual Population Genetic Algorithm (MPDPGA) for unconstrained function optimizations on multi-core system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multithreaded%20Parallel%20Dual%20Population%20Genetic%20Algorithm%20(MPDPGA)%20for%20unconstrained%20function%20optimizations%20on%20multi-core%20system&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Umbarkar,%20A.J.&rft.date=2014-09-15&rft.volume=243&rft.spage=936&rft.epage=949&rft.pages=936-949&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.06.033&rft_dat=%3Cproquest_cross%3E1567090821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-72786d2ead8e96fe850b417700e7a1e354fc662acc768136267f574e27ff230f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567090821&rft_id=info:pmid/&rfr_iscdi=true |