Loading…
Weak Subdifferentials for Set-Valued Mappings
The purpose of this paper is to study the weak subdifferential for set-valued mappings, which was introduced by Chen and Jahn (Math. Methods Oper. Res., 48:187–200, 1998 ). Two existence theorems of weak subgradients for set-valued mappings are obtained. Moreover, some properties of the weak subdiff...
Saved in:
Published in: | Journal of optimization theory and applications 2014-07, Vol.162 (1), p.1-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-fc9b78f743a7dd667f6434ba89708ef83dbc450b26c4fbe39c325532c07d8dfd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-fc9b78f743a7dd667f6434ba89708ef83dbc450b26c4fbe39c325532c07d8dfd3 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of optimization theory and applications |
container_volume | 162 |
creator | Long, X. J. Peng, J. W. Li, X. B. |
description | The purpose of this paper is to study the weak subdifferential for set-valued mappings, which was introduced by Chen and Jahn (Math. Methods Oper. Res., 48:187–200,
1998
). Two existence theorems of weak subgradients for set-valued mappings are obtained. Moreover, some properties of the weak subdifferential for set-valued mappings are derived. Our results improve the corresponding ones in the literature. Some examples are given to illustrate our results. |
doi_str_mv | 10.1007/s10957-013-0469-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567104875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3365312671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-fc9b78f743a7dd667f6434ba89708ef83dbc450b26c4fbe39c325532c07d8dfd3</originalsourceid><addsrcrecordid>eNp1kLtOxDAQRS0EEmHhA-gi0dAYxo_ETolWvKRFFMujtBw_VlmySbCTgr_Hq1AgJKop5tw7o4PQOYErAiCuI4GqEBgIw8DLCrMDlJFCMEylkIcoA6AUM8qqY3QS4xYAKil4hvC70x_5eqpt470Lrhsb3cbc9yFfuxG_6XZyNn_Sw9B0m3iKjnxau7OfuUCvd7cvywe8er5_XN6ssGGSjtibqhbSC860sLYshS8547WWlQDpvGS2NryAmpaG-9qxyjBaFIwaEFZab9kCXc69Q-g_JxdHtWuicW2rO9dPUZGiFAS4FEVCL_6g234KXfouUekqEQxooshMmdDHGJxXQ2h2OnwpAmovUM0CVRKo9gIVSxk6Z2Jiu40Lv5r_DX0D-KJxSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543417302</pqid></control><display><type>article</type><title>Weak Subdifferentials for Set-Valued Mappings</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Long, X. J. ; Peng, J. W. ; Li, X. B.</creator><creatorcontrib>Long, X. J. ; Peng, J. W. ; Li, X. B.</creatorcontrib><description>The purpose of this paper is to study the weak subdifferential for set-valued mappings, which was introduced by Chen and Jahn (Math. Methods Oper. Res., 48:187–200,
1998
). Two existence theorems of weak subgradients for set-valued mappings are obtained. Moreover, some properties of the weak subdifferential for set-valued mappings are derived. Our results improve the corresponding ones in the literature. Some examples are given to illustrate our results.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-013-0469-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Engineering ; Existence theorems ; Mapping ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Studies ; Theorems ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2014-07, Vol.162 (1), p.1-12</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-fc9b78f743a7dd667f6434ba89708ef83dbc450b26c4fbe39c325532c07d8dfd3</citedby><cites>FETCH-LOGICAL-c382t-fc9b78f743a7dd667f6434ba89708ef83dbc450b26c4fbe39c325532c07d8dfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1543417302/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1543417302?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Long, X. J.</creatorcontrib><creatorcontrib>Peng, J. W.</creatorcontrib><creatorcontrib>Li, X. B.</creatorcontrib><title>Weak Subdifferentials for Set-Valued Mappings</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>The purpose of this paper is to study the weak subdifferential for set-valued mappings, which was introduced by Chen and Jahn (Math. Methods Oper. Res., 48:187–200,
1998
). Two existence theorems of weak subgradients for set-valued mappings are obtained. Moreover, some properties of the weak subdifferential for set-valued mappings are derived. Our results improve the corresponding ones in the literature. Some examples are given to illustrate our results.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Engineering</subject><subject>Existence theorems</subject><subject>Mapping</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Studies</subject><subject>Theorems</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kLtOxDAQRS0EEmHhA-gi0dAYxo_ETolWvKRFFMujtBw_VlmySbCTgr_Hq1AgJKop5tw7o4PQOYErAiCuI4GqEBgIw8DLCrMDlJFCMEylkIcoA6AUM8qqY3QS4xYAKil4hvC70x_5eqpt470Lrhsb3cbc9yFfuxG_6XZyNn_Sw9B0m3iKjnxau7OfuUCvd7cvywe8er5_XN6ssGGSjtibqhbSC860sLYshS8547WWlQDpvGS2NryAmpaG-9qxyjBaFIwaEFZab9kCXc69Q-g_JxdHtWuicW2rO9dPUZGiFAS4FEVCL_6g234KXfouUekqEQxooshMmdDHGJxXQ2h2OnwpAmovUM0CVRKo9gIVSxk6Z2Jiu40Lv5r_DX0D-KJxSg</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Long, X. J.</creator><creator>Peng, J. W.</creator><creator>Li, X. B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140701</creationdate><title>Weak Subdifferentials for Set-Valued Mappings</title><author>Long, X. J. ; Peng, J. W. ; Li, X. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-fc9b78f743a7dd667f6434ba89708ef83dbc450b26c4fbe39c325532c07d8dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Engineering</topic><topic>Existence theorems</topic><topic>Mapping</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Studies</topic><topic>Theorems</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, X. J.</creatorcontrib><creatorcontrib>Peng, J. W.</creatorcontrib><creatorcontrib>Li, X. B.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, X. J.</au><au>Peng, J. W.</au><au>Li, X. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Subdifferentials for Set-Valued Mappings</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>162</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>The purpose of this paper is to study the weak subdifferential for set-valued mappings, which was introduced by Chen and Jahn (Math. Methods Oper. Res., 48:187–200,
1998
). Two existence theorems of weak subgradients for set-valued mappings are obtained. Moreover, some properties of the weak subdifferential for set-valued mappings are derived. Our results improve the corresponding ones in the literature. Some examples are given to illustrate our results.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-013-0469-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2014-07, Vol.162 (1), p.1-12 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567104875 |
source | ABI/INFORM Global; Springer Link |
subjects | Analysis Applications of Mathematics Calculus of Variations and Optimal Control Optimization Engineering Existence theorems Mapping Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Studies Theorems Theory of Computation |
title | Weak Subdifferentials for Set-Valued Mappings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Subdifferentials%20for%20Set-Valued%20Mappings&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Long,%20X.%20J.&rft.date=2014-07-01&rft.volume=162&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-013-0469-3&rft_dat=%3Cproquest_cross%3E3365312671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-fc9b78f743a7dd667f6434ba89708ef83dbc450b26c4fbe39c325532c07d8dfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1543417302&rft_id=info:pmid/&rfr_iscdi=true |