Loading…

Anomalous impact strength for layered double hydroxide-palmitate/poly(ε-caprolactone) nanocomposites

ABSTRACT Inherent physical properties and commercial availability makes poly(ε‐caprolactone) (PCL) very attractive as a potential substitute material for nondegradable polymers for commodity applications. However, a balance of toughness and stiffness is needed in order to transfer this potential int...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2014-11, Vol.131 (22), p.np-n/a
Main Authors: Moyo, Lumbidzani, Makhado, Edwin, Sinha Ray, Suprakas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Inherent physical properties and commercial availability makes poly(ε‐caprolactone) (PCL) very attractive as a potential substitute material for nondegradable polymers for commodity applications. However, a balance of toughness and stiffness is needed in order to transfer this potential into reality, particularly for short‐term packaging applications. In this context, layered double hydroxide modified with palmitic acid (LDH‐palmitate), was used as a nanoadditive to enhance the mechanical properties of PCL. Composites from PCL were prepared by melt‐blending with LDH‐palmitate loadings in the 1−10 wt % range. Scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction were used to study the structure and morphology of the composites. The results showed homogeneous dispersion of clay particles in composites, but the degree of stacking of clay platelets was related to the LDH‐palmitate loadings. Charpy impact test measurements revealed an anomalous toughness improvement in the case of composite containing 5 wt % LDH‐palmitate, attributed to a combination of microcavitation and changes in crystallite sizes in the composite. The addition of LDH‐palmitate improved the water vapor barrier permeation of neat PCL film. In summary, LDH‐palmitate was shown to have potential as a nanoadditive to obtain tougher LDH‐PCL composite with improved barrier property. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 41109.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.41109