Loading…

Solution-processed indacenodithiophene-based small molecule for bulk heterojunction solar cells

A novel small molecule with a acceptor-donor-acceptor (A-D-A) structure, IDT(BTTh sub(2)) sub(2), containing an electron-rich indacenodithiophene (IDT) unit as core, flanked by electron-deficient 2,1,3-benzothiadiazole (BT) units and end-capped with hexyl-substituted bithiophene units, has been synt...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2013-01, Vol.1 (45), p.14214-14220
Main Authors: Yong, Weina, Zhang, Maojie, Xin, Xiaodong, Li, Zhaojun, Wu, Yue, Guo, Xia, Yang, Zhou, Hou, Jianhui
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel small molecule with a acceptor-donor-acceptor (A-D-A) structure, IDT(BTTh sub(2)) sub(2), containing an electron-rich indacenodithiophene (IDT) unit as core, flanked by electron-deficient 2,1,3-benzothiadiazole (BT) units and end-capped with hexyl-substituted bithiophene units, has been synthesized for photovoltaic application. IDT(BTTh sub(2)) sub(2) shows a broad absorption in the visible range with an optical band gap of ca.1.80 eV and possesses a relatively deep HOMO level at -5.21 eV. The solution-processed bulk heterojunction solar cells based on the blend of IDT(BTTh sub(2)) sub(2)/PC sub(71)BM (1 : 3, w/w) without using any treatment such as a solvent additive or thermal annealing, showed a power conversion efficiency (PCE) of 4.25% with a high open-circuit voltage (V sub(oc)) of 0.93 V, a short-circuit current (J sub(sc)) of 9.42 mA cm super(-2) and a fill factor (FF) of 48.5%, under the illumination of AM 1.5G at 100 mW cm super(-2). These results indicate that indacenodithiophene-based small molecules are promising for bulk heterojunction solar cells.
ISSN:2050-7488
2050-7496
DOI:10.1039/c3ta12229h