Loading…

Constrained Cartesian motion control for teleoperated surgical robots

This paper addresses the problem of optimal motion control for teleoperated surgical robots, which must maneuver in constrained workspaces, often through a narrow entry portal into the patient's body. The control problem is determining how best to use the available degrees of freedom of a surgi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics and automation 1996-06, Vol.12 (3), p.453-465
Main Authors: Funda, J., Taylor, R.H., Eldridge, B., Gomory, S., Gruben, K.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-5a24f04700363ebacefab15a249639ddc23e69fb4e00b8ea0cbc86c5ab9d50f63
cites cdi_FETCH-LOGICAL-c399t-5a24f04700363ebacefab15a249639ddc23e69fb4e00b8ea0cbc86c5ab9d50f63
container_end_page 465
container_issue 3
container_start_page 453
container_title IEEE transactions on robotics and automation
container_volume 12
creator Funda, J.
Taylor, R.H.
Eldridge, B.
Gomory, S.
Gruben, K.G.
description This paper addresses the problem of optimal motion control for teleoperated surgical robots, which must maneuver in constrained workspaces, often through a narrow entry portal into the patient's body. The control problem is determining how best to use the available degrees of freedom of a surgical robot to accomplish a particular task, while respecting geometric constraints on the work volume, robot mechanism, and the specific task requirements. We present a method of formulating desired motions as sets of task goals in any number of coordinate frames (task frames) relevant to the task, optionally subject to additional linear constraints in each of the task frames. Mathematically, the kinematic control problem is posed as a constrained quadratic optimization problem and is shown to be computable in real time on a PC. We will present experimental results of the application of this control methodology to both kinematically deficient and kinematically redundant robots. Specifically, we will discuss the control issues within the context of a representative set of tasks in robot-assisted laparoscopy, which includes (but is not limited to) teleoperated navigation of a laparoscopic camera attached to a surgical robot. A system based on this control formalism has been used in preclinical in vivo studies at the Johns Hopkins University Medical Center and the early experience with the system will be summarized.
doi_str_mv 10.1109/70.499826
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15733224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>499826</ieee_id><sourcerecordid>15733224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-5a24f04700363ebacefab15a249639ddc23e69fb4e00b8ea0cbc86c5ab9d50f63</originalsourceid><addsrcrecordid>eNpd0EtLAzEQB_AgCtbHwaunRUTwsDWvzW6OstQHFLwo9Bay2VlJ2SY1yR789qa09OApMPnlP5NB6IbgOSFYPtV4zqVsqDhBM8pqXsqqWZ2iGcGcllSK1Tm6iHGNMWaE8hlatN7FFLR10BetDgmi1a7Y-GS9K4x3KfixGHwoEozgtxB0yjJO4dsaPRbBdz7FK3Q26DHC9eG8RF8vi8_2rVx-vL63z8vSMClTWWnKB8zr3Fww6LSBQXdkV5WCyb43lIGQQ8cB464BjU1nGmEq3cm-woNgl-hhn7sN_meCmNTGRgPjqB34KSpS1YxRyjO8-wfXfgouz6Yo4xI3NaszetwjE3yMAQa1DXajw68iWO22qWqs9tvM9v4QqGP-9xC0MzYeHzAsORMks9s9swBwvD1k_AGLXXzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234908737</pqid></control><display><type>article</type><title>Constrained Cartesian motion control for teleoperated surgical robots</title><source>IEEE Xplore (Online service)</source><creator>Funda, J. ; Taylor, R.H. ; Eldridge, B. ; Gomory, S. ; Gruben, K.G.</creator><creatorcontrib>Funda, J. ; Taylor, R.H. ; Eldridge, B. ; Gomory, S. ; Gruben, K.G.</creatorcontrib><description>This paper addresses the problem of optimal motion control for teleoperated surgical robots, which must maneuver in constrained workspaces, often through a narrow entry portal into the patient's body. The control problem is determining how best to use the available degrees of freedom of a surgical robot to accomplish a particular task, while respecting geometric constraints on the work volume, robot mechanism, and the specific task requirements. We present a method of formulating desired motions as sets of task goals in any number of coordinate frames (task frames) relevant to the task, optionally subject to additional linear constraints in each of the task frames. Mathematically, the kinematic control problem is posed as a constrained quadratic optimization problem and is shown to be computable in real time on a PC. We will present experimental results of the application of this control methodology to both kinematically deficient and kinematically redundant robots. Specifically, we will discuss the control issues within the context of a representative set of tasks in robot-assisted laparoscopy, which includes (but is not limited to) teleoperated navigation of a laparoscopic camera attached to a surgical robot. A system based on this control formalism has been used in preclinical in vivo studies at the Johns Hopkins University Medical Center and the early experience with the system will be summarized.</description><identifier>ISSN: 1042-296X</identifier><identifier>EISSN: 2374-958X</identifier><identifier>DOI: 10.1109/70.499826</identifier><identifier>CODEN: IRAUEZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Cameras ; Computer science; control theory; systems ; Constraint optimization ; Control theory. Systems ; Exact sciences and technology ; Laparoscopes ; Medical equipment ; Medical robotics ; Motion control ; Navigation ; Portals ; Robot kinematics ; Robot vision systems ; Robotics ; Robots ; Surgery</subject><ispartof>IEEE transactions on robotics and automation, 1996-06, Vol.12 (3), p.453-465</ispartof><rights>1996 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 1996</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-5a24f04700363ebacefab15a249639ddc23e69fb4e00b8ea0cbc86c5ab9d50f63</citedby><cites>FETCH-LOGICAL-c399t-5a24f04700363ebacefab15a249639ddc23e69fb4e00b8ea0cbc86c5ab9d50f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/499826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3094361$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Funda, J.</creatorcontrib><creatorcontrib>Taylor, R.H.</creatorcontrib><creatorcontrib>Eldridge, B.</creatorcontrib><creatorcontrib>Gomory, S.</creatorcontrib><creatorcontrib>Gruben, K.G.</creatorcontrib><title>Constrained Cartesian motion control for teleoperated surgical robots</title><title>IEEE transactions on robotics and automation</title><addtitle>T-RA</addtitle><description>This paper addresses the problem of optimal motion control for teleoperated surgical robots, which must maneuver in constrained workspaces, often through a narrow entry portal into the patient's body. The control problem is determining how best to use the available degrees of freedom of a surgical robot to accomplish a particular task, while respecting geometric constraints on the work volume, robot mechanism, and the specific task requirements. We present a method of formulating desired motions as sets of task goals in any number of coordinate frames (task frames) relevant to the task, optionally subject to additional linear constraints in each of the task frames. Mathematically, the kinematic control problem is posed as a constrained quadratic optimization problem and is shown to be computable in real time on a PC. We will present experimental results of the application of this control methodology to both kinematically deficient and kinematically redundant robots. Specifically, we will discuss the control issues within the context of a representative set of tasks in robot-assisted laparoscopy, which includes (but is not limited to) teleoperated navigation of a laparoscopic camera attached to a surgical robot. A system based on this control formalism has been used in preclinical in vivo studies at the Johns Hopkins University Medical Center and the early experience with the system will be summarized.</description><subject>Applied sciences</subject><subject>Cameras</subject><subject>Computer science; control theory; systems</subject><subject>Constraint optimization</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Laparoscopes</subject><subject>Medical equipment</subject><subject>Medical robotics</subject><subject>Motion control</subject><subject>Navigation</subject><subject>Portals</subject><subject>Robot kinematics</subject><subject>Robot vision systems</subject><subject>Robotics</subject><subject>Robots</subject><subject>Surgery</subject><issn>1042-296X</issn><issn>2374-958X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLAzEQB_AgCtbHwaunRUTwsDWvzW6OstQHFLwo9Bay2VlJ2SY1yR789qa09OApMPnlP5NB6IbgOSFYPtV4zqVsqDhBM8pqXsqqWZ2iGcGcllSK1Tm6iHGNMWaE8hlatN7FFLR10BetDgmi1a7Y-GS9K4x3KfixGHwoEozgtxB0yjJO4dsaPRbBdz7FK3Q26DHC9eG8RF8vi8_2rVx-vL63z8vSMClTWWnKB8zr3Fww6LSBQXdkV5WCyb43lIGQQ8cB464BjU1nGmEq3cm-woNgl-hhn7sN_meCmNTGRgPjqB34KSpS1YxRyjO8-wfXfgouz6Yo4xI3NaszetwjE3yMAQa1DXajw68iWO22qWqs9tvM9v4QqGP-9xC0MzYeHzAsORMks9s9swBwvD1k_AGLXXzM</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Funda, J.</creator><creator>Taylor, R.H.</creator><creator>Eldridge, B.</creator><creator>Gomory, S.</creator><creator>Gruben, K.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19960601</creationdate><title>Constrained Cartesian motion control for teleoperated surgical robots</title><author>Funda, J. ; Taylor, R.H. ; Eldridge, B. ; Gomory, S. ; Gruben, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-5a24f04700363ebacefab15a249639ddc23e69fb4e00b8ea0cbc86c5ab9d50f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Cameras</topic><topic>Computer science; control theory; systems</topic><topic>Constraint optimization</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Laparoscopes</topic><topic>Medical equipment</topic><topic>Medical robotics</topic><topic>Motion control</topic><topic>Navigation</topic><topic>Portals</topic><topic>Robot kinematics</topic><topic>Robot vision systems</topic><topic>Robotics</topic><topic>Robots</topic><topic>Surgery</topic><toplevel>online_resources</toplevel><creatorcontrib>Funda, J.</creatorcontrib><creatorcontrib>Taylor, R.H.</creatorcontrib><creatorcontrib>Eldridge, B.</creatorcontrib><creatorcontrib>Gomory, S.</creatorcontrib><creatorcontrib>Gruben, K.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on robotics and automation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Funda, J.</au><au>Taylor, R.H.</au><au>Eldridge, B.</au><au>Gomory, S.</au><au>Gruben, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained Cartesian motion control for teleoperated surgical robots</atitle><jtitle>IEEE transactions on robotics and automation</jtitle><stitle>T-RA</stitle><date>1996-06-01</date><risdate>1996</risdate><volume>12</volume><issue>3</issue><spage>453</spage><epage>465</epage><pages>453-465</pages><issn>1042-296X</issn><eissn>2374-958X</eissn><coden>IRAUEZ</coden><abstract>This paper addresses the problem of optimal motion control for teleoperated surgical robots, which must maneuver in constrained workspaces, often through a narrow entry portal into the patient's body. The control problem is determining how best to use the available degrees of freedom of a surgical robot to accomplish a particular task, while respecting geometric constraints on the work volume, robot mechanism, and the specific task requirements. We present a method of formulating desired motions as sets of task goals in any number of coordinate frames (task frames) relevant to the task, optionally subject to additional linear constraints in each of the task frames. Mathematically, the kinematic control problem is posed as a constrained quadratic optimization problem and is shown to be computable in real time on a PC. We will present experimental results of the application of this control methodology to both kinematically deficient and kinematically redundant robots. Specifically, we will discuss the control issues within the context of a representative set of tasks in robot-assisted laparoscopy, which includes (but is not limited to) teleoperated navigation of a laparoscopic camera attached to a surgical robot. A system based on this control formalism has been used in preclinical in vivo studies at the Johns Hopkins University Medical Center and the early experience with the system will be summarized.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/70.499826</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1042-296X
ispartof IEEE transactions on robotics and automation, 1996-06, Vol.12 (3), p.453-465
issn 1042-296X
2374-958X
language eng
recordid cdi_proquest_miscellaneous_15733224
source IEEE Xplore (Online service)
subjects Applied sciences
Cameras
Computer science
control theory
systems
Constraint optimization
Control theory. Systems
Exact sciences and technology
Laparoscopes
Medical equipment
Medical robotics
Motion control
Navigation
Portals
Robot kinematics
Robot vision systems
Robotics
Robots
Surgery
title Constrained Cartesian motion control for teleoperated surgical robots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20Cartesian%20motion%20control%20for%20teleoperated%20surgical%20robots&rft.jtitle=IEEE%20transactions%20on%20robotics%20and%20automation&rft.au=Funda,%20J.&rft.date=1996-06-01&rft.volume=12&rft.issue=3&rft.spage=453&rft.epage=465&rft.pages=453-465&rft.issn=1042-296X&rft.eissn=2374-958X&rft.coden=IRAUEZ&rft_id=info:doi/10.1109/70.499826&rft_dat=%3Cproquest_cross%3E15733224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-5a24f04700363ebacefab15a249639ddc23e69fb4e00b8ea0cbc86c5ab9d50f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=234908737&rft_id=info:pmid/&rft_ieee_id=499826&rfr_iscdi=true