Loading…

Topology of fine-scale motions in turbulent channel flow

An investigation of topological features of the velocity gradient field of turbulent channel flow has been carried out using results from a direct numerical simulation for which the Reynolds number based on the channel half-width and the centreline velocity was 7860. Plots of the joint probability d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 1996-03, Vol.310, p.269-292
Main Authors: Blackburn, Hugh M., Mansour, Nagi N., Cantwell, Brian J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An investigation of topological features of the velocity gradient field of turbulent channel flow has been carried out using results from a direct numerical simulation for which the Reynolds number based on the channel half-width and the centreline velocity was 7860. Plots of the joint probability density functions of the invariants of the rate of strain and velocity gradient tensors indicated that away from the wall region, the fine-scale motions in the flow have many characteristics in common with a variety of other turbulent and transitional flows: the intermediate principal strain rate tended to be positive at sites of high viscous dissipation of kinetic energy, while the invariants of the velocity gradient tensor showed that a preference existed for stable focus/stretching and unstable node/saddle/saddle topologies. Visualization of regions in the flow with stable focus/stretching topologies revealed arrays of discrete downstream-leaning flow structures which originated near the wall and penetrated into the outer region of the flow. In all regions of the flow, there was a strong preference for the vorticity to be aligned with the intermediate principal strain rate direction, with the effect increasing near the walls in response to boundary conditions.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112096001802