Loading…

Mutational analysis of the human papillomavirus type 16 E1 Lambda E4 protein shows that the C terminus is dispensable for keratin cytoskeleton association but is involved in inducing disruption of the keratin filaments

The function of the human papillomavirus (HPV) E4 proteins is unknown. In cultured epithelial cells the proteins associate with the keratin intermediate filaments (IFs) and, for some E4 types, e.g., HPV type 16 (HPV-16), induce collapse of the keratin networks. An N-terminal leucine-rich motif (LLXL...

Full description

Saved in:
Bibliographic Details
Published in:Journal of virology 1997-05, Vol.71 (5), p.3554-3562
Main Authors: Roberts, S, Ashmole, I, Rookes, S M, Gallimore, PH
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The function of the human papillomavirus (HPV) E4 proteins is unknown. In cultured epithelial cells the proteins associate with the keratin intermediate filaments (IFs) and, for some E4 types, e.g., HPV type 16 (HPV-16), induce collapse of the keratin networks. An N-terminal leucine-rich motif (LLXLL) is a conserved feature of many E4 proteins. In a previous study we showed that deletion of this region from the HPV-1 and -16 E4 proteins abrogated the localization of the mutant proteins to the keratin cytoskeleton in a simian virus 40-transformed human keratinocyte cell line (S. Roberts, I. Ashmole, L. J. Gibson, S. M. Rookes, G. J. Barton, and P. H. Gallimore, J. Virol. 68:6432-6445, 1994). The E4 proteins of HPV-1 and -16 have little sequence homology except at the N terminus. Therefore, to establish the role of sequences other than those at the N terminus, we have performed a mutational analysis of the HPV-16 E4 protein. The results of the analysis were as follows: (i) similar to findings for the HPV-1 protein, no mutation of HPV-16 E4 sequences (other than the N-terminal leucine motif) results in a mutant protein which fails to colocalize to the keratin IFs; (ii) the C-terminal domain (residues 61 to 92) is not essential for association with the cytoskeleton; and (iii) deletion of C-terminal sequences (residues 84 to 92; LTVIVTLHP) corresponding to part of a domain conserved between mucosal E4 proteins affects the ability of the mutant protein to induce cytoskeletal collapse, despite colocalization with the keratin IFs. Further analysis of this region showed that conserved hydrophobic residues valines 86 and 88 are important. In addition, we show that the HPV-16 E4 protein is detergent insoluble and exists as several disulfide-linked, high-molecular-weight complexes which could represent homo-oligomers. The C-terminal sequences (residues 84 to 92), in particular valines 86 and 88, are important in the formation of these insoluble complexes. The results of this study support our postulate that the E4 proteins include functional domains at the N terminus and the C terminus, with the intervening sequences possibly acting as a flexible hinge.
ISSN:0022-538X