Loading…
Spreading depression and focal brain ischemia induce cyclooxygenase-2 in cortical neurons through N-methyl-D-aspartic acid-receptors and phospholipase A sub(2)
Repetitive spreading depression (SD) waves, involving depolarization of neurons and astrocytes and upregulation of glucose consumption, is thought to lower the threshold of neuronal death during and immediately after ischemia. Using rat models for SD and focal ischemia we investigated the expression...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1997-06, Vol.94 (12), p.6500-6505 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Repetitive spreading depression (SD) waves, involving depolarization of neurons and astrocytes and upregulation of glucose consumption, is thought to lower the threshold of neuronal death during and immediately after ischemia. Using rat models for SD and focal ischemia we investigated the expression of cyclooxygenase-1 (COX-1), the constitutive form, and cyclooxygenase-2 (COX-2), the inducible form of a key enzyme in prostaglandin biosynthesis and the target enzymes for nonsteroidal anti-inflammatory drugs. Whereas COX-1 mRNA levels were undetectable and uninducible, COX-2 mRNA and protein levels were rapidly increased in the cortex, especially in layers 2 and 3 after SD and transient focal ischemia. The cortical induction was reduced by MK-801, an N-methyl-D-aspartic acid-receptor antagonist, and by dexamethasone and quinacrine, phospholipase A sub(2) (PLA sub(2)) inhibiting compounds. MK-801 acted by blocking SD whereas treatment with PLA sub(2) inhibitors preserved the wave propagation. NBQX, an alpha -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid /kainate-receptor antagonist, did not affect the SD-induced COX-2 expression, whereas COX-inhibitors indomethacin and diclofenac, as well as a NO synthase-inhibitor, N super(G)-nitro-L-arginine methyl ester, tended to enhance the COX-2 mRNA expression. In addition, ischemia induced COX-2 expression in the hippocampal and perifocal striatal neurons and in endothelial cells. Thus, COX-2 is transiently induced after SD and focal ischemia by activation of N-methyl-D-aspartic acid-receptors and PLA sub(2), most prominently in cortical neurons that are at a high risk to die after focal brain ischemia. |
---|---|
ISSN: | 0027-8424 |