Loading…

Rhizosphere microbial populations in contaminated soils

Rhizosphere microbial populations may increase bioremediation of soil contaminated with organic chemicals. A growth chamber study was conducted to evaluate rhizosphere microbial populations in contaminated and non-contaminated soil. Alfalfa (Medicago sativa L.) and alpine bluegrass (Poa alpina L.) w...

Full description

Saved in:
Bibliographic Details
Published in:Water, air, and soil pollution air, and soil pollution, 1997-04, Vol.95 (1-4), p.165-178
Main Authors: Nichols, T.D. (Arkansas Univ., Fayetteville, AR (USA). Dept. of Agronomy), Wolf, D.C, Rogers, H.B, Beyrouty, C.A, Reynolds, C.M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rhizosphere microbial populations may increase bioremediation of soil contaminated with organic chemicals. A growth chamber study was conducted to evaluate rhizosphere microbial populations in contaminated and non-contaminated soil. Alfalfa (Medicago sativa L.) and alpine bluegrass (Poa alpina L.) were grown in soil containing a mixture of organic chemicals for 14 weeks. The equal millimolar mixture of hexadecane, (2,2-dimethylpropyl)benzene, cis-decahydronaphthalene (decalin), benzoic acid, phenanthrene, and pyrene was added at levels of 0 and 2000 mg/kg. Organic chemical degrader (OCD) populations were assessed by a Most-Probable-Number technique, and bacteria and fungi were enumerated by plate count methods. Different methods for expressing OCD rhizosphere populations were investigated to determine the effect it had on interpretation of the results. At 9 weeks, the OCD numbers were significantly higher in rhizosphere and contaminated soils than in bulk and non-contaminated soils, respectively. Alfalfa rhizosphere OCD levels were 4 × 107/g for contaminated and 6 × 106/g for non-contaminated soils. Bluegrass rhizosphere OCD levels were 1 × 107/g and 1 × 106/g in contaminated and non-contaminated soils, respectively. Selective enrichment of OCD populations was observed in contaminated rhizosphere soil. Higher numbers of OCD in contaminated rhizospheres suggest potential stimulation of bioremediation around plant roots.
ISSN:0049-6979
1573-2932
DOI:10.1007/BF02406163