Loading…

Mechanisms of mutagenesis by exocyclic DNA adducts. Construction and in vitro template characteristics of an oligonucleotide bearing a single site-specific ethenocytosine

By using a gene-targeted random DNA adduction approach, we have recently shown that chloroacetaldehyde, a metabolite of vinyl chloride, induces mutations predominantly at cytosines under conditions in which both ethenoadenine (epsilon A) and ethenocytosine (epsilon C) are formed. Although the observ...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1991-09, Vol.30 (36), p.8727-8735
Main Authors: Simha, Devendranath, Palejwala, Vaseem A, Humayun, M. Zafri
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By using a gene-targeted random DNA adduction approach, we have recently shown that chloroacetaldehyde, a metabolite of vinyl chloride, induces mutations predominantly at cytosines under conditions in which both ethenoadenine (epsilon A) and ethenocytosine (epsilon C) are formed. Although the observed mutational specificity of epsilon C suggested that it was a noninstructional lesion, the high efficiency of mutagenesis and an apparent lack of SOS dependence were reminiscent of mispairing lesions. To obtain more direct evidence showing that epsilon C has properties of a noninstructional mutagenic lesion, we have examined the in vitro template properties of a single epsilon C residue at a unique position in a synthetic oligonucleotide. The oligonucleotide was constructed by use of the following steps: (a) in vitro treatment of the pentameric oligodeoxyribonucleotide TTCTT with chloroacetaldehyde to convert the central cytosine to ethenocytosine; (b) purification and characterization of TT epsilon CTT; and (c) ligation of purified TT epsilon CTT to two decamers to create a 25 nt long oligodeoxyribonucleotide with a centrally located epsilon C residue. The template characteristics of epsilon C were examined by the annealing of end-labeled primers to the purified epsilon C-containing oligonucleotide and primer elongation by Escherichia coli DNA polymerase I in the presence of one or more nucleotide precursors. The elongation products were analyzed by high-resolution gel electrophoresis followed by autoradiography and quantitated by computing densitometry.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00100a003