Loading…
Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI-TOF mass spectrometry
Toxic cyanobacterial blooms are a threat because of secondary metabolite production. We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to identify intact microorganisms. Microgram quantities of prepared cells, including solvent (acetonitrile and ethanol) and α-cyan...
Saved in:
Published in: | Nature biotechnology 1997-09, Vol.15 (9), p.906-909 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Toxic cyanobacterial blooms are a threat because of secondary metabolite production. We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to identify intact microorganisms. Microgram quantities of prepared cells, including solvent (acetonitrile and ethanol) and α-cyano-4-hydroxycinnamic acid matrix, display spectra showing predominantly the secondary metabolites including known microcystins, micropeptin, and anabaenopeptolin. A new cyclic anabaenopeptolin has been identified using the Post-Source-Decay mode. Strains of various origins can easily be typed according to their cyclic peptide production, and toxic and nontoxic algal blooms can be differentiated within minutes. |
---|---|
ISSN: | 1087-0156 1546-1696 |
DOI: | 10.1038/nbt0997-906 |