Loading…
Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells
Repairing osteochondral defects (OCD) remains a formidable challenge due to the high complexity of native osteochondral tissue and the limited self-repair capability of cartilage. Osteochondral tissue engineering is a promising strategy for the treatment of OCD. In this study, we fabricated a novel...
Saved in:
Published in: | ACS applied materials & interfaces 2014-10, Vol.6 (19), p.16696-16705 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3 |
container_end_page | 16705 |
container_issue | 19 |
container_start_page | 16696 |
container_title | ACS applied materials & interfaces |
container_volume | 6 |
creator | Ding, Xiaoming Zhu, Meifeng Xu, Baoshan Zhang, Jiamin Zhao, Yanhong Ji, Shenglu Wang, Lina Wang, Lianyong Li, Xiulan Kong, Deling Ma, Xinlong Yang, Qiang |
description | Repairing osteochondral defects (OCD) remains a formidable challenge due to the high complexity of native osteochondral tissue and the limited self-repair capability of cartilage. Osteochondral tissue engineering is a promising strategy for the treatment of OCD. In this study, we fabricated a novel integrated trilayered scaffold using silk fibroin and hydroxyapatite by combining paraffin-sphere leaching with a modified temperature gradient-guided thermal-induced phase separation (TIPS) technique. This biomimetic scaffold is characterized by three layers: a chondral layer with a longitudinally oriented microtubular structure, a bony layer with a 3D porous structure and an intermediate layer with a dense structure. Live/dead and CCK-8 tests indicated that this scaffold possesses good biocompatibility for supporting the growth, proliferation, and infiltration of adipose-derived stem cells (ADSCs). Histological and immunohistochemical stainings and real-time polymerase chain reaction (RT-PCR) confirmed that the ADSCs could be induced to differentiate toward chondrocytes or osteoblasts in vitro at chondral and bony layers in the presence of chondrogenic- or osteogenic-induced culture medium, respectively. Moreover, the intermediate layer could play an isolating role for preventing the cells within the chondral and bony layers from mixing with each other. In conclusion, the trilayered and integrated osteochondral scaffolds can effectively support cartilage and bone tissue generation in vitro and are potentially applicable for OC tissue engineering in vivo. |
doi_str_mv | 10.1021/am5036708 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1609504897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1609504897</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3</originalsourceid><addsrcrecordid>eNptkEFPAjEQhRujEUQP_gHTi4keVttuu-weCYiSkHAAz5u2O9XC7hbbxYR_bwnKydO8ZL55mfcQuqXkiRJGn2UjSJoNSX6G-rTgPMmZYOcnzXkPXYWwJiRLGRGXqBfXlBSC9dFm1nbw4WUHFV55W8s9-CiXtt7gqVXe2RYvtTTG1RU2zuNF6MDpT9dWXtZ4Yo2JB21nZWddi53Bo8puXYBkAt5-H6w6aPAY6jpcowsj6wA3v3OA3qcvq_FbMl-8zsajeSJTKrqEG8GZSgvFFBdKcyK0ygpWaEI5FaYglMoclMhi9tRkVEEmh1zkOdOCQgrpAD0cfbfefe0gdGVjg44fyBbcLpQ0i9kJz4thRB-PqPYuBA-m3HrbSL8vKSkP3ZanbiN792u7Uw1UJ_KvzAjcHwGpQ7l2O9_GlP8Y_QD7IH9V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609504897</pqid></control><display><type>article</type><title>Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Ding, Xiaoming ; Zhu, Meifeng ; Xu, Baoshan ; Zhang, Jiamin ; Zhao, Yanhong ; Ji, Shenglu ; Wang, Lina ; Wang, Lianyong ; Li, Xiulan ; Kong, Deling ; Ma, Xinlong ; Yang, Qiang</creator><creatorcontrib>Ding, Xiaoming ; Zhu, Meifeng ; Xu, Baoshan ; Zhang, Jiamin ; Zhao, Yanhong ; Ji, Shenglu ; Wang, Lina ; Wang, Lianyong ; Li, Xiulan ; Kong, Deling ; Ma, Xinlong ; Yang, Qiang</creatorcontrib><description>Repairing osteochondral defects (OCD) remains a formidable challenge due to the high complexity of native osteochondral tissue and the limited self-repair capability of cartilage. Osteochondral tissue engineering is a promising strategy for the treatment of OCD. In this study, we fabricated a novel integrated trilayered scaffold using silk fibroin and hydroxyapatite by combining paraffin-sphere leaching with a modified temperature gradient-guided thermal-induced phase separation (TIPS) technique. This biomimetic scaffold is characterized by three layers: a chondral layer with a longitudinally oriented microtubular structure, a bony layer with a 3D porous structure and an intermediate layer with a dense structure. Live/dead and CCK-8 tests indicated that this scaffold possesses good biocompatibility for supporting the growth, proliferation, and infiltration of adipose-derived stem cells (ADSCs). Histological and immunohistochemical stainings and real-time polymerase chain reaction (RT-PCR) confirmed that the ADSCs could be induced to differentiate toward chondrocytes or osteoblasts in vitro at chondral and bony layers in the presence of chondrogenic- or osteogenic-induced culture medium, respectively. Moreover, the intermediate layer could play an isolating role for preventing the cells within the chondral and bony layers from mixing with each other. In conclusion, the trilayered and integrated osteochondral scaffolds can effectively support cartilage and bone tissue generation in vitro and are potentially applicable for OC tissue engineering in vivo.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am5036708</identifier><identifier>PMID: 25210952</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adipose Tissue - cytology ; Animals ; Bombyx ; Cell Adhesion - drug effects ; Cell Differentiation - drug effects ; Cell Proliferation - drug effects ; Cell Separation ; Cell Survival - drug effects ; Chondrocytes - cytology ; Chondrocytes - drug effects ; Chondrogenesis - drug effects ; Chondrogenesis - genetics ; Compressive Strength - drug effects ; Elastic Modulus - drug effects ; Extracellular Matrix - drug effects ; Extracellular Matrix - metabolism ; Gene Expression Regulation - drug effects ; Immunohistochemistry ; Osteogenesis - drug effects ; Osteogenesis - genetics ; Rabbits ; Silk - pharmacology ; Spectroscopy, Fourier Transform Infrared ; Stem Cells - cytology ; Stem Cells - drug effects ; Tissue Scaffolds - chemistry ; X-Ray Diffraction</subject><ispartof>ACS applied materials & interfaces, 2014-10, Vol.6 (19), p.16696-16705</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3</citedby><cites>FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25210952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Xiaoming</creatorcontrib><creatorcontrib>Zhu, Meifeng</creatorcontrib><creatorcontrib>Xu, Baoshan</creatorcontrib><creatorcontrib>Zhang, Jiamin</creatorcontrib><creatorcontrib>Zhao, Yanhong</creatorcontrib><creatorcontrib>Ji, Shenglu</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Wang, Lianyong</creatorcontrib><creatorcontrib>Li, Xiulan</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><creatorcontrib>Ma, Xinlong</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><title>Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Repairing osteochondral defects (OCD) remains a formidable challenge due to the high complexity of native osteochondral tissue and the limited self-repair capability of cartilage. Osteochondral tissue engineering is a promising strategy for the treatment of OCD. In this study, we fabricated a novel integrated trilayered scaffold using silk fibroin and hydroxyapatite by combining paraffin-sphere leaching with a modified temperature gradient-guided thermal-induced phase separation (TIPS) technique. This biomimetic scaffold is characterized by three layers: a chondral layer with a longitudinally oriented microtubular structure, a bony layer with a 3D porous structure and an intermediate layer with a dense structure. Live/dead and CCK-8 tests indicated that this scaffold possesses good biocompatibility for supporting the growth, proliferation, and infiltration of adipose-derived stem cells (ADSCs). Histological and immunohistochemical stainings and real-time polymerase chain reaction (RT-PCR) confirmed that the ADSCs could be induced to differentiate toward chondrocytes or osteoblasts in vitro at chondral and bony layers in the presence of chondrogenic- or osteogenic-induced culture medium, respectively. Moreover, the intermediate layer could play an isolating role for preventing the cells within the chondral and bony layers from mixing with each other. In conclusion, the trilayered and integrated osteochondral scaffolds can effectively support cartilage and bone tissue generation in vitro and are potentially applicable for OC tissue engineering in vivo.</description><subject>Adipose Tissue - cytology</subject><subject>Animals</subject><subject>Bombyx</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Separation</subject><subject>Cell Survival - drug effects</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - drug effects</subject><subject>Chondrogenesis - drug effects</subject><subject>Chondrogenesis - genetics</subject><subject>Compressive Strength - drug effects</subject><subject>Elastic Modulus - drug effects</subject><subject>Extracellular Matrix - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Immunohistochemistry</subject><subject>Osteogenesis - drug effects</subject><subject>Osteogenesis - genetics</subject><subject>Rabbits</subject><subject>Silk - pharmacology</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Tissue Scaffolds - chemistry</subject><subject>X-Ray Diffraction</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkEFPAjEQhRujEUQP_gHTi4keVttuu-weCYiSkHAAz5u2O9XC7hbbxYR_bwnKydO8ZL55mfcQuqXkiRJGn2UjSJoNSX6G-rTgPMmZYOcnzXkPXYWwJiRLGRGXqBfXlBSC9dFm1nbw4WUHFV55W8s9-CiXtt7gqVXe2RYvtTTG1RU2zuNF6MDpT9dWXtZ4Yo2JB21nZWddi53Bo8puXYBkAt5-H6w6aPAY6jpcowsj6wA3v3OA3qcvq_FbMl-8zsajeSJTKrqEG8GZSgvFFBdKcyK0ygpWaEI5FaYglMoclMhi9tRkVEEmh1zkOdOCQgrpAD0cfbfefe0gdGVjg44fyBbcLpQ0i9kJz4thRB-PqPYuBA-m3HrbSL8vKSkP3ZanbiN792u7Uw1UJ_KvzAjcHwGpQ7l2O9_GlP8Y_QD7IH9V</recordid><startdate>20141008</startdate><enddate>20141008</enddate><creator>Ding, Xiaoming</creator><creator>Zhu, Meifeng</creator><creator>Xu, Baoshan</creator><creator>Zhang, Jiamin</creator><creator>Zhao, Yanhong</creator><creator>Ji, Shenglu</creator><creator>Wang, Lina</creator><creator>Wang, Lianyong</creator><creator>Li, Xiulan</creator><creator>Kong, Deling</creator><creator>Ma, Xinlong</creator><creator>Yang, Qiang</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141008</creationdate><title>Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells</title><author>Ding, Xiaoming ; Zhu, Meifeng ; Xu, Baoshan ; Zhang, Jiamin ; Zhao, Yanhong ; Ji, Shenglu ; Wang, Lina ; Wang, Lianyong ; Li, Xiulan ; Kong, Deling ; Ma, Xinlong ; Yang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adipose Tissue - cytology</topic><topic>Animals</topic><topic>Bombyx</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Separation</topic><topic>Cell Survival - drug effects</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - drug effects</topic><topic>Chondrogenesis - drug effects</topic><topic>Chondrogenesis - genetics</topic><topic>Compressive Strength - drug effects</topic><topic>Elastic Modulus - drug effects</topic><topic>Extracellular Matrix - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Immunohistochemistry</topic><topic>Osteogenesis - drug effects</topic><topic>Osteogenesis - genetics</topic><topic>Rabbits</topic><topic>Silk - pharmacology</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Tissue Scaffolds - chemistry</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xiaoming</creatorcontrib><creatorcontrib>Zhu, Meifeng</creatorcontrib><creatorcontrib>Xu, Baoshan</creatorcontrib><creatorcontrib>Zhang, Jiamin</creatorcontrib><creatorcontrib>Zhao, Yanhong</creatorcontrib><creatorcontrib>Ji, Shenglu</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Wang, Lianyong</creatorcontrib><creatorcontrib>Li, Xiulan</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><creatorcontrib>Ma, Xinlong</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Xiaoming</au><au>Zhu, Meifeng</au><au>Xu, Baoshan</au><au>Zhang, Jiamin</au><au>Zhao, Yanhong</au><au>Ji, Shenglu</au><au>Wang, Lina</au><au>Wang, Lianyong</au><au>Li, Xiulan</au><au>Kong, Deling</au><au>Ma, Xinlong</au><au>Yang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2014-10-08</date><risdate>2014</risdate><volume>6</volume><issue>19</issue><spage>16696</spage><epage>16705</epage><pages>16696-16705</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Repairing osteochondral defects (OCD) remains a formidable challenge due to the high complexity of native osteochondral tissue and the limited self-repair capability of cartilage. Osteochondral tissue engineering is a promising strategy for the treatment of OCD. In this study, we fabricated a novel integrated trilayered scaffold using silk fibroin and hydroxyapatite by combining paraffin-sphere leaching with a modified temperature gradient-guided thermal-induced phase separation (TIPS) technique. This biomimetic scaffold is characterized by three layers: a chondral layer with a longitudinally oriented microtubular structure, a bony layer with a 3D porous structure and an intermediate layer with a dense structure. Live/dead and CCK-8 tests indicated that this scaffold possesses good biocompatibility for supporting the growth, proliferation, and infiltration of adipose-derived stem cells (ADSCs). Histological and immunohistochemical stainings and real-time polymerase chain reaction (RT-PCR) confirmed that the ADSCs could be induced to differentiate toward chondrocytes or osteoblasts in vitro at chondral and bony layers in the presence of chondrogenic- or osteogenic-induced culture medium, respectively. Moreover, the intermediate layer could play an isolating role for preventing the cells within the chondral and bony layers from mixing with each other. In conclusion, the trilayered and integrated osteochondral scaffolds can effectively support cartilage and bone tissue generation in vitro and are potentially applicable for OC tissue engineering in vivo.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25210952</pmid><doi>10.1021/am5036708</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2014-10, Vol.6 (19), p.16696-16705 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1609504897 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Adipose Tissue - cytology Animals Bombyx Cell Adhesion - drug effects Cell Differentiation - drug effects Cell Proliferation - drug effects Cell Separation Cell Survival - drug effects Chondrocytes - cytology Chondrocytes - drug effects Chondrogenesis - drug effects Chondrogenesis - genetics Compressive Strength - drug effects Elastic Modulus - drug effects Extracellular Matrix - drug effects Extracellular Matrix - metabolism Gene Expression Regulation - drug effects Immunohistochemistry Osteogenesis - drug effects Osteogenesis - genetics Rabbits Silk - pharmacology Spectroscopy, Fourier Transform Infrared Stem Cells - cytology Stem Cells - drug effects Tissue Scaffolds - chemistry X-Ray Diffraction |
title | Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Trilayered%20Silk%20Fibroin%20Scaffold%20for%20Osteochondral%20Differentiation%20of%20Adipose-Derived%20Stem%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ding,%20Xiaoming&rft.date=2014-10-08&rft.volume=6&rft.issue=19&rft.spage=16696&rft.epage=16705&rft.pages=16696-16705&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am5036708&rft_dat=%3Cproquest_cross%3E1609504897%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1609504897&rft_id=info:pmid/25210952&rfr_iscdi=true |