Loading…

Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells

Repairing osteochondral defects (OCD) remains a formidable challenge due to the high complexity of native osteochondral tissue and the limited self-repair capability of cartilage. Osteochondral tissue engineering is a promising strategy for the treatment of OCD. In this study, we fabricated a novel...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2014-10, Vol.6 (19), p.16696-16705
Main Authors: Ding, Xiaoming, Zhu, Meifeng, Xu, Baoshan, Zhang, Jiamin, Zhao, Yanhong, Ji, Shenglu, Wang, Lina, Wang, Lianyong, Li, Xiulan, Kong, Deling, Ma, Xinlong, Yang, Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3
cites cdi_FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3
container_end_page 16705
container_issue 19
container_start_page 16696
container_title ACS applied materials & interfaces
container_volume 6
creator Ding, Xiaoming
Zhu, Meifeng
Xu, Baoshan
Zhang, Jiamin
Zhao, Yanhong
Ji, Shenglu
Wang, Lina
Wang, Lianyong
Li, Xiulan
Kong, Deling
Ma, Xinlong
Yang, Qiang
description Repairing osteochondral defects (OCD) remains a formidable challenge due to the high complexity of native osteochondral tissue and the limited self-repair capability of cartilage. Osteochondral tissue engineering is a promising strategy for the treatment of OCD. In this study, we fabricated a novel integrated trilayered scaffold using silk fibroin and hydroxyapatite by combining paraffin-sphere leaching with a modified temperature gradient-guided thermal-induced phase separation (TIPS) technique. This biomimetic scaffold is characterized by three layers: a chondral layer with a longitudinally oriented microtubular structure, a bony layer with a 3D porous structure and an intermediate layer with a dense structure. Live/dead and CCK-8 tests indicated that this scaffold possesses good biocompatibility for supporting the growth, proliferation, and infiltration of adipose-derived stem cells (ADSCs). Histological and immunohistochemical stainings and real-time polymerase chain reaction (RT-PCR) confirmed that the ADSCs could be induced to differentiate toward chondrocytes or osteoblasts in vitro at chondral and bony layers in the presence of chondrogenic- or osteogenic-induced culture medium, respectively. Moreover, the intermediate layer could play an isolating role for preventing the cells within the chondral and bony layers from mixing with each other. In conclusion, the trilayered and integrated osteochondral scaffolds can effectively support cartilage and bone tissue generation in vitro and are potentially applicable for OC tissue engineering in vivo.
doi_str_mv 10.1021/am5036708
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1609504897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1609504897</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3</originalsourceid><addsrcrecordid>eNptkEFPAjEQhRujEUQP_gHTi4keVttuu-weCYiSkHAAz5u2O9XC7hbbxYR_bwnKydO8ZL55mfcQuqXkiRJGn2UjSJoNSX6G-rTgPMmZYOcnzXkPXYWwJiRLGRGXqBfXlBSC9dFm1nbw4WUHFV55W8s9-CiXtt7gqVXe2RYvtTTG1RU2zuNF6MDpT9dWXtZ4Yo2JB21nZWddi53Bo8puXYBkAt5-H6w6aPAY6jpcowsj6wA3v3OA3qcvq_FbMl-8zsajeSJTKrqEG8GZSgvFFBdKcyK0ygpWaEI5FaYglMoclMhi9tRkVEEmh1zkOdOCQgrpAD0cfbfefe0gdGVjg44fyBbcLpQ0i9kJz4thRB-PqPYuBA-m3HrbSL8vKSkP3ZanbiN792u7Uw1UJ_KvzAjcHwGpQ7l2O9_GlP8Y_QD7IH9V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609504897</pqid></control><display><type>article</type><title>Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ding, Xiaoming ; Zhu, Meifeng ; Xu, Baoshan ; Zhang, Jiamin ; Zhao, Yanhong ; Ji, Shenglu ; Wang, Lina ; Wang, Lianyong ; Li, Xiulan ; Kong, Deling ; Ma, Xinlong ; Yang, Qiang</creator><creatorcontrib>Ding, Xiaoming ; Zhu, Meifeng ; Xu, Baoshan ; Zhang, Jiamin ; Zhao, Yanhong ; Ji, Shenglu ; Wang, Lina ; Wang, Lianyong ; Li, Xiulan ; Kong, Deling ; Ma, Xinlong ; Yang, Qiang</creatorcontrib><description>Repairing osteochondral defects (OCD) remains a formidable challenge due to the high complexity of native osteochondral tissue and the limited self-repair capability of cartilage. Osteochondral tissue engineering is a promising strategy for the treatment of OCD. In this study, we fabricated a novel integrated trilayered scaffold using silk fibroin and hydroxyapatite by combining paraffin-sphere leaching with a modified temperature gradient-guided thermal-induced phase separation (TIPS) technique. This biomimetic scaffold is characterized by three layers: a chondral layer with a longitudinally oriented microtubular structure, a bony layer with a 3D porous structure and an intermediate layer with a dense structure. Live/dead and CCK-8 tests indicated that this scaffold possesses good biocompatibility for supporting the growth, proliferation, and infiltration of adipose-derived stem cells (ADSCs). Histological and immunohistochemical stainings and real-time polymerase chain reaction (RT-PCR) confirmed that the ADSCs could be induced to differentiate toward chondrocytes or osteoblasts in vitro at chondral and bony layers in the presence of chondrogenic- or osteogenic-induced culture medium, respectively. Moreover, the intermediate layer could play an isolating role for preventing the cells within the chondral and bony layers from mixing with each other. In conclusion, the trilayered and integrated osteochondral scaffolds can effectively support cartilage and bone tissue generation in vitro and are potentially applicable for OC tissue engineering in vivo.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am5036708</identifier><identifier>PMID: 25210952</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adipose Tissue - cytology ; Animals ; Bombyx ; Cell Adhesion - drug effects ; Cell Differentiation - drug effects ; Cell Proliferation - drug effects ; Cell Separation ; Cell Survival - drug effects ; Chondrocytes - cytology ; Chondrocytes - drug effects ; Chondrogenesis - drug effects ; Chondrogenesis - genetics ; Compressive Strength - drug effects ; Elastic Modulus - drug effects ; Extracellular Matrix - drug effects ; Extracellular Matrix - metabolism ; Gene Expression Regulation - drug effects ; Immunohistochemistry ; Osteogenesis - drug effects ; Osteogenesis - genetics ; Rabbits ; Silk - pharmacology ; Spectroscopy, Fourier Transform Infrared ; Stem Cells - cytology ; Stem Cells - drug effects ; Tissue Scaffolds - chemistry ; X-Ray Diffraction</subject><ispartof>ACS applied materials &amp; interfaces, 2014-10, Vol.6 (19), p.16696-16705</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3</citedby><cites>FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25210952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Xiaoming</creatorcontrib><creatorcontrib>Zhu, Meifeng</creatorcontrib><creatorcontrib>Xu, Baoshan</creatorcontrib><creatorcontrib>Zhang, Jiamin</creatorcontrib><creatorcontrib>Zhao, Yanhong</creatorcontrib><creatorcontrib>Ji, Shenglu</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Wang, Lianyong</creatorcontrib><creatorcontrib>Li, Xiulan</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><creatorcontrib>Ma, Xinlong</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><title>Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Repairing osteochondral defects (OCD) remains a formidable challenge due to the high complexity of native osteochondral tissue and the limited self-repair capability of cartilage. Osteochondral tissue engineering is a promising strategy for the treatment of OCD. In this study, we fabricated a novel integrated trilayered scaffold using silk fibroin and hydroxyapatite by combining paraffin-sphere leaching with a modified temperature gradient-guided thermal-induced phase separation (TIPS) technique. This biomimetic scaffold is characterized by three layers: a chondral layer with a longitudinally oriented microtubular structure, a bony layer with a 3D porous structure and an intermediate layer with a dense structure. Live/dead and CCK-8 tests indicated that this scaffold possesses good biocompatibility for supporting the growth, proliferation, and infiltration of adipose-derived stem cells (ADSCs). Histological and immunohistochemical stainings and real-time polymerase chain reaction (RT-PCR) confirmed that the ADSCs could be induced to differentiate toward chondrocytes or osteoblasts in vitro at chondral and bony layers in the presence of chondrogenic- or osteogenic-induced culture medium, respectively. Moreover, the intermediate layer could play an isolating role for preventing the cells within the chondral and bony layers from mixing with each other. In conclusion, the trilayered and integrated osteochondral scaffolds can effectively support cartilage and bone tissue generation in vitro and are potentially applicable for OC tissue engineering in vivo.</description><subject>Adipose Tissue - cytology</subject><subject>Animals</subject><subject>Bombyx</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Separation</subject><subject>Cell Survival - drug effects</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - drug effects</subject><subject>Chondrogenesis - drug effects</subject><subject>Chondrogenesis - genetics</subject><subject>Compressive Strength - drug effects</subject><subject>Elastic Modulus - drug effects</subject><subject>Extracellular Matrix - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Immunohistochemistry</subject><subject>Osteogenesis - drug effects</subject><subject>Osteogenesis - genetics</subject><subject>Rabbits</subject><subject>Silk - pharmacology</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Tissue Scaffolds - chemistry</subject><subject>X-Ray Diffraction</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkEFPAjEQhRujEUQP_gHTi4keVttuu-weCYiSkHAAz5u2O9XC7hbbxYR_bwnKydO8ZL55mfcQuqXkiRJGn2UjSJoNSX6G-rTgPMmZYOcnzXkPXYWwJiRLGRGXqBfXlBSC9dFm1nbw4WUHFV55W8s9-CiXtt7gqVXe2RYvtTTG1RU2zuNF6MDpT9dWXtZ4Yo2JB21nZWddi53Bo8puXYBkAt5-H6w6aPAY6jpcowsj6wA3v3OA3qcvq_FbMl-8zsajeSJTKrqEG8GZSgvFFBdKcyK0ygpWaEI5FaYglMoclMhi9tRkVEEmh1zkOdOCQgrpAD0cfbfefe0gdGVjg44fyBbcLpQ0i9kJz4thRB-PqPYuBA-m3HrbSL8vKSkP3ZanbiN792u7Uw1UJ_KvzAjcHwGpQ7l2O9_GlP8Y_QD7IH9V</recordid><startdate>20141008</startdate><enddate>20141008</enddate><creator>Ding, Xiaoming</creator><creator>Zhu, Meifeng</creator><creator>Xu, Baoshan</creator><creator>Zhang, Jiamin</creator><creator>Zhao, Yanhong</creator><creator>Ji, Shenglu</creator><creator>Wang, Lina</creator><creator>Wang, Lianyong</creator><creator>Li, Xiulan</creator><creator>Kong, Deling</creator><creator>Ma, Xinlong</creator><creator>Yang, Qiang</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141008</creationdate><title>Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells</title><author>Ding, Xiaoming ; Zhu, Meifeng ; Xu, Baoshan ; Zhang, Jiamin ; Zhao, Yanhong ; Ji, Shenglu ; Wang, Lina ; Wang, Lianyong ; Li, Xiulan ; Kong, Deling ; Ma, Xinlong ; Yang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adipose Tissue - cytology</topic><topic>Animals</topic><topic>Bombyx</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Separation</topic><topic>Cell Survival - drug effects</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - drug effects</topic><topic>Chondrogenesis - drug effects</topic><topic>Chondrogenesis - genetics</topic><topic>Compressive Strength - drug effects</topic><topic>Elastic Modulus - drug effects</topic><topic>Extracellular Matrix - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Immunohistochemistry</topic><topic>Osteogenesis - drug effects</topic><topic>Osteogenesis - genetics</topic><topic>Rabbits</topic><topic>Silk - pharmacology</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Tissue Scaffolds - chemistry</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xiaoming</creatorcontrib><creatorcontrib>Zhu, Meifeng</creatorcontrib><creatorcontrib>Xu, Baoshan</creatorcontrib><creatorcontrib>Zhang, Jiamin</creatorcontrib><creatorcontrib>Zhao, Yanhong</creatorcontrib><creatorcontrib>Ji, Shenglu</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Wang, Lianyong</creatorcontrib><creatorcontrib>Li, Xiulan</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><creatorcontrib>Ma, Xinlong</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Xiaoming</au><au>Zhu, Meifeng</au><au>Xu, Baoshan</au><au>Zhang, Jiamin</au><au>Zhao, Yanhong</au><au>Ji, Shenglu</au><au>Wang, Lina</au><au>Wang, Lianyong</au><au>Li, Xiulan</au><au>Kong, Deling</au><au>Ma, Xinlong</au><au>Yang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2014-10-08</date><risdate>2014</risdate><volume>6</volume><issue>19</issue><spage>16696</spage><epage>16705</epage><pages>16696-16705</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Repairing osteochondral defects (OCD) remains a formidable challenge due to the high complexity of native osteochondral tissue and the limited self-repair capability of cartilage. Osteochondral tissue engineering is a promising strategy for the treatment of OCD. In this study, we fabricated a novel integrated trilayered scaffold using silk fibroin and hydroxyapatite by combining paraffin-sphere leaching with a modified temperature gradient-guided thermal-induced phase separation (TIPS) technique. This biomimetic scaffold is characterized by three layers: a chondral layer with a longitudinally oriented microtubular structure, a bony layer with a 3D porous structure and an intermediate layer with a dense structure. Live/dead and CCK-8 tests indicated that this scaffold possesses good biocompatibility for supporting the growth, proliferation, and infiltration of adipose-derived stem cells (ADSCs). Histological and immunohistochemical stainings and real-time polymerase chain reaction (RT-PCR) confirmed that the ADSCs could be induced to differentiate toward chondrocytes or osteoblasts in vitro at chondral and bony layers in the presence of chondrogenic- or osteogenic-induced culture medium, respectively. Moreover, the intermediate layer could play an isolating role for preventing the cells within the chondral and bony layers from mixing with each other. In conclusion, the trilayered and integrated osteochondral scaffolds can effectively support cartilage and bone tissue generation in vitro and are potentially applicable for OC tissue engineering in vivo.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25210952</pmid><doi>10.1021/am5036708</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2014-10, Vol.6 (19), p.16696-16705
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1609504897
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Adipose Tissue - cytology
Animals
Bombyx
Cell Adhesion - drug effects
Cell Differentiation - drug effects
Cell Proliferation - drug effects
Cell Separation
Cell Survival - drug effects
Chondrocytes - cytology
Chondrocytes - drug effects
Chondrogenesis - drug effects
Chondrogenesis - genetics
Compressive Strength - drug effects
Elastic Modulus - drug effects
Extracellular Matrix - drug effects
Extracellular Matrix - metabolism
Gene Expression Regulation - drug effects
Immunohistochemistry
Osteogenesis - drug effects
Osteogenesis - genetics
Rabbits
Silk - pharmacology
Spectroscopy, Fourier Transform Infrared
Stem Cells - cytology
Stem Cells - drug effects
Tissue Scaffolds - chemistry
X-Ray Diffraction
title Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Trilayered%20Silk%20Fibroin%20Scaffold%20for%20Osteochondral%20Differentiation%20of%20Adipose-Derived%20Stem%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ding,%20Xiaoming&rft.date=2014-10-08&rft.volume=6&rft.issue=19&rft.spage=16696&rft.epage=16705&rft.pages=16696-16705&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am5036708&rft_dat=%3Cproquest_cross%3E1609504897%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-4f542b39b2b45bc405cb6929c01415f9011a8eb561023f61be6a745882c51e3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1609504897&rft_id=info:pmid/25210952&rfr_iscdi=true