Loading…

Growth factors and their receptors derived from human amniotic cells in vitro

In vitro studies have shown that amnion-produced growth factors participated in angiogenesis, re-epithelialization, and immunomodulation. The aim of our study was to investigate the growth factors and receptors produced by human amnion tissue and amniotic cells. Human amnions (hAM) were isolated, an...

Full description

Saved in:
Bibliographic Details
Published in:Folia histochemica et cytobiologica 2014-01, Vol.52 (3), p.163-170
Main Authors: Grzywocz, Zofia, Pius-Sadowska, Ewa, Klos, Patrycja, Gryzik, Marek, Wasilewska, Danuta, Aleksandrowicz, Barbara, Dworczynska, Malgorzata, Sabalinska, Stanislawa, Hoser, Grazyna, Machalinski, Boguslaw, Kawiak, Jerzy
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In vitro studies have shown that amnion-produced growth factors participated in angiogenesis, re-epithelialization, and immunomodulation. The aim of our study was to investigate the growth factors and receptors produced by human amnion tissue and amniotic cells. Human amnions (hAM) were isolated, and amnion circles were dissected for in vitro analysis. Some amnion fragments were digested by the use of different methods to obtain two cell fractions, which were analysed for mesenchymal and epithelial cell markers. Amniotic circles and human amniotic cell fractions were cultured in a protein-free medium. Proteins secreted into the culture medium were analysed with a human growth factor antibody array. Conditioned culture media were added to human umbilical vein epithelial cells (HUVECs) to test for stimulation of migration (scratch test) and proliferation (Ki67 expression). Fraction 1 cells expressed both cytokeratin and mesenchymal cell markers which indicated that it was composed of a mixture of human amnion epithelial cells (hAECs) and mesenchymal stromal cells (hAMSCs). Fraction 2 cells mainly expressed cytokeratin and, therefore, were designed as hAECs. Secretion of proteins by the cultured cells increased with time. The hAM cultures secreted EGF-R, IGF, and IGFBP-2,-3 and -6; Cell Fraction 1 secreted NT-4, whereas Cell Fraction 2 secreted G-CSF, M-CSF, and PDGF. Conditioned media of hAM cultures stimulated HUVECs migration. We have showed for the first time that human amnions and amniotic cells secreted IGFBP-6, MCSF-R, PDGF-AB, FGF-6, IGFBP-4, NT-4, and VEGF-R3. We found that Cell Fraction 1, Cell Fraction 2, and the whole amnion secreted different proteins, possibly due to different proportions of amnion-derived cells and different cell-cell interactions. The hAM cell factors remained functional in vitro and induced intensified migration of HUVECs. The growth factors and receptors found in amnion or amniotic cell media might be used for regenerative medicine.
ISSN:0239-8508
1897-5631
DOI:10.5603/FHC.2014.0019