Loading…

S100A1 and S100B are dispensable for endochondral ossification during skeletal development

S100A1 and S100B are induced by the SOX trio transcription factors (SOX9, SOX5, and SOX6) in chondrocytes, and inhibit their hypertrophic differentiation in culture. However, functional roles of S100A1 and S100B during in vivo skeletal development are yet to be determined. Here we show that mice def...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical Research 2014/08/01, Vol.35(4), pp.243-250
Main Authors: MORI, Yoshifumi, MORI, Daisuke, CHUNG, Ung-il, TANAKA, Sakae, HEIERHORST, Jörg, BUCHOU, Thierry, BAUDIER, Jacques, KAWAGUCHI, Hiroshi, SAITO, Taku
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:S100A1 and S100B are induced by the SOX trio transcription factors (SOX9, SOX5, and SOX6) in chondrocytes, and inhibit their hypertrophic differentiation in culture. However, functional roles of S100A1 and S100B during in vivo skeletal development are yet to be determined. Here we show that mice deficient of both the S100a1 and S100b genes displayed normal skeletal growth from embryonic stage to adulthood. Although no compensatory upregulation of other S100 family members was observed in S100a1/S100b double mutants, the related S100a2, S100a4, S100a10, and S100a11 were expressed at similarly high levels to S100a1 and S100b in mouse primary chondrocytes. Furthermore, overexpression of these other S100 members suppressed the hypertrophic differentiation of chondrocytes in vitro as efficiently as S100A1 and S100B. Taken together, the present study demonstrates that S100A1 and S100B are dispensable for endochondral ossification during skeletal development, most likely because their deficiency may be masked by other S100 proteins which have similar functions to those of S100A1 and S100B.
ISSN:0388-6107
1880-313X
DOI:10.2220/biomedres.35.243