Loading…
Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana
The mechanisms of carbon concentration in marine diatoms are controversial. At low CO₂, decreases in O₂ evolution after inhibition of phosphoenolpyruvate carboxylases (PEPCs), and increases in PEPC transcript abundances, have been interpreted as evidence for a C₄ mechanism in Thalassiosira pseudonan...
Saved in:
Published in: | The New phytologist 2014-11, Vol.204 (3), p.507-520 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 520 |
container_issue | 3 |
container_start_page | 507 |
container_title | The New phytologist |
container_volume | 204 |
creator | Kustka, Adam B Milligan, Allen J Zheng, Haiyan New, Ashley M Gates, Colin Bidle, Kay D Reinfelder, John R |
description | The mechanisms of carbon concentration in marine diatoms are controversial. At low CO₂, decreases in O₂ evolution after inhibition of phosphoenolpyruvate carboxylases (PEPCs), and increases in PEPC transcript abundances, have been interpreted as evidence for a C₄ mechanism in Thalassiosira pseudonana, but the ascertainment of which proteins are responsible for the subsequent decarboxylation and PEP regeneration steps has been elusive. We evaluated the responses of T. pseudonana to steady‐state differences in CO₂ availability, as well as to transient shifts to low CO₂, by integrated measurements of photosynthetic parameters, transcript abundances and quantitative proteomics. On shifts to low CO₂, two PEPC transcript abundances increased and then declined on timescales consistent with recoveries of Fᵥ/Fₘ, non‐photochemical quenching (NPQ) and maximum chlorophyll a‐specific carbon fixation (Pₘₐₓ), but transcripts for archetypical decarboxylation enzymes phosphoenolpyruvate carboxykinase (PEPCK) and malic enzyme (ME) did not change. Of 3688 protein abundances measured, 39 were up‐regulated under low CO₂, including both PEPCs and pyruvate carboxylase (PYC), whereas ME abundance did not change and PEPCK abundance declined. We propose a closed‐loop biochemical model, whereby T. pseudonana produces and subsequently decarboxylates a C₄ acid via PEPC₂ and PYC, respectively, regenerates phosphoenolpyruvate (PEP) from pyruvate in a pyruvate phosphate dikinase‐independent (but glycine decarboxylase (GDC)‐dependent) manner, and recuperates photorespiratory CO₂ as oxaloacetate (OAA). |
doi_str_mv | 10.1111/nph.12926 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1612290542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.204.3.507</jstor_id><sourcerecordid>newphytologist.204.3.507</sourcerecordid><originalsourceid>FETCH-LOGICAL-f3856-e960d3d032aa7d27498febc1eeeaffb52ba190298c8a8b028ffe69a5c6ab23563</originalsourceid><addsrcrecordid>eNp9kkGP1CAYhonRuOPqwT-gJF68dBdooeVoJqtrMnFN3E28ka8tnTJpoQLNZK4TD_7O_SUyM7t78CAX-OB5Xz7ygtBbSi5oGpd26i8ok0w8QwtaCJlVNC-fowUhrMpEIX6eoVchbAghkgv2Ep0xTgrBy3KB_qzcFi9v7vd77HWYhxiwsRhSAd6DXetR24hdhxvwtbN41BFqN5gw4uhwmKfJ-YiX9_vfeOpddGFnY6-jaR4FEIIZzQDRpCJZ3_YwHPZcMB7wFPTcOgsWXqMXHQxBv3mYz9Hd56vb5XW2uvnydflplXV5xUWmpSBt3pKcAZQtKwtZdbpuqNYauq7mrAYqCZNVU0FVp_d3nRYSeCOgZjkX-Tn6ePKdvPs16xDVaEKjhwGsdnNQVFDGJOEFS-iHf9CNm71N3SnGaU7Kkgv6P-roVREhSaLePVBzPepWTd6M4HfqMYkEXJ6ArRn07umcEnWIWKWI1TFi9e379XGRFNlJsQnR-SeF1dup30U3uLVJzTBSqFxxcrjh_YnvwClYexPU3Q9GKE__gkrGq_wv-SS1lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612280690</pqid></control><display><type>article</type><title>Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana</title><source>Wiley-Blackwell Read & Publish Collection</source><source>JSTOR</source><creator>Kustka, Adam B ; Milligan, Allen J ; Zheng, Haiyan ; New, Ashley M ; Gates, Colin ; Bidle, Kay D ; Reinfelder, John R</creator><creatorcontrib>Kustka, Adam B ; Milligan, Allen J ; Zheng, Haiyan ; New, Ashley M ; Gates, Colin ; Bidle, Kay D ; Reinfelder, John R</creatorcontrib><description>The mechanisms of carbon concentration in marine diatoms are controversial. At low CO₂, decreases in O₂ evolution after inhibition of phosphoenolpyruvate carboxylases (PEPCs), and increases in PEPC transcript abundances, have been interpreted as evidence for a C₄ mechanism in Thalassiosira pseudonana, but the ascertainment of which proteins are responsible for the subsequent decarboxylation and PEP regeneration steps has been elusive. We evaluated the responses of T. pseudonana to steady‐state differences in CO₂ availability, as well as to transient shifts to low CO₂, by integrated measurements of photosynthetic parameters, transcript abundances and quantitative proteomics. On shifts to low CO₂, two PEPC transcript abundances increased and then declined on timescales consistent with recoveries of Fᵥ/Fₘ, non‐photochemical quenching (NPQ) and maximum chlorophyll a‐specific carbon fixation (Pₘₐₓ), but transcripts for archetypical decarboxylation enzymes phosphoenolpyruvate carboxykinase (PEPCK) and malic enzyme (ME) did not change. Of 3688 protein abundances measured, 39 were up‐regulated under low CO₂, including both PEPCs and pyruvate carboxylase (PYC), whereas ME abundance did not change and PEPCK abundance declined. We propose a closed‐loop biochemical model, whereby T. pseudonana produces and subsequently decarboxylates a C₄ acid via PEPC₂ and PYC, respectively, regenerates phosphoenolpyruvate (PEP) from pyruvate in a pyruvate phosphate dikinase‐independent (but glycine decarboxylase (GDC)‐dependent) manner, and recuperates photorespiratory CO₂ as oxaloacetate (OAA).</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12926</identifier><identifier>PMID: 25046577</identifier><language>eng</language><publisher>England: Academic Press</publisher><subject>Abundance ; Biological assimilation ; C4 metabolism ; C4 photosynthesis ; Carbon ; Carbon - metabolism ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon Dioxide - pharmacology ; Carbon fixation ; Chlorophyll ; Chlorophyll a ; Decarboxylation ; Diatoms ; Diatoms - drug effects ; Diatoms - physiology ; Enzymes ; fatty acid metabolism ; Glycine ; Glycine (amino acid) ; glycine decarboxylase ; Malic enzyme ; marine diatoms ; Marine microorganisms ; Metabolism ; oxygen ; pentose phosphate pathway ; Phosphates ; Photochemicals ; Photochemistry ; Photorespiration ; Photosynthesis ; Photosynthesis - physiology ; Plants ; Plastids ; Proteins ; Proteomics ; Pyruvate carboxylase ; Pyruvate phosphate dikinase ; pyruvate phosphate dikinase (PPDK) ; Pyruvic acid ; quantitative proteomics ; Regeneration ; Regeneration (biological) ; Thalassiosira ; Thalassiosira pseudonana ; Transcription</subject><ispartof>The New phytologist, 2014-11, Vol.204 (3), p.507-520</ispartof><rights>2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust.</rights><rights>Copyright © 2014 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.204.3.507$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.204.3.507$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25046577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kustka, Adam B</creatorcontrib><creatorcontrib>Milligan, Allen J</creatorcontrib><creatorcontrib>Zheng, Haiyan</creatorcontrib><creatorcontrib>New, Ashley M</creatorcontrib><creatorcontrib>Gates, Colin</creatorcontrib><creatorcontrib>Bidle, Kay D</creatorcontrib><creatorcontrib>Reinfelder, John R</creatorcontrib><title>Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The mechanisms of carbon concentration in marine diatoms are controversial. At low CO₂, decreases in O₂ evolution after inhibition of phosphoenolpyruvate carboxylases (PEPCs), and increases in PEPC transcript abundances, have been interpreted as evidence for a C₄ mechanism in Thalassiosira pseudonana, but the ascertainment of which proteins are responsible for the subsequent decarboxylation and PEP regeneration steps has been elusive. We evaluated the responses of T. pseudonana to steady‐state differences in CO₂ availability, as well as to transient shifts to low CO₂, by integrated measurements of photosynthetic parameters, transcript abundances and quantitative proteomics. On shifts to low CO₂, two PEPC transcript abundances increased and then declined on timescales consistent with recoveries of Fᵥ/Fₘ, non‐photochemical quenching (NPQ) and maximum chlorophyll a‐specific carbon fixation (Pₘₐₓ), but transcripts for archetypical decarboxylation enzymes phosphoenolpyruvate carboxykinase (PEPCK) and malic enzyme (ME) did not change. Of 3688 protein abundances measured, 39 were up‐regulated under low CO₂, including both PEPCs and pyruvate carboxylase (PYC), whereas ME abundance did not change and PEPCK abundance declined. We propose a closed‐loop biochemical model, whereby T. pseudonana produces and subsequently decarboxylates a C₄ acid via PEPC₂ and PYC, respectively, regenerates phosphoenolpyruvate (PEP) from pyruvate in a pyruvate phosphate dikinase‐independent (but glycine decarboxylase (GDC)‐dependent) manner, and recuperates photorespiratory CO₂ as oxaloacetate (OAA).</description><subject>Abundance</subject><subject>Biological assimilation</subject><subject>C4 metabolism</subject><subject>C4 photosynthesis</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon Dioxide - pharmacology</subject><subject>Carbon fixation</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Decarboxylation</subject><subject>Diatoms</subject><subject>Diatoms - drug effects</subject><subject>Diatoms - physiology</subject><subject>Enzymes</subject><subject>fatty acid metabolism</subject><subject>Glycine</subject><subject>Glycine (amino acid)</subject><subject>glycine decarboxylase</subject><subject>Malic enzyme</subject><subject>marine diatoms</subject><subject>Marine microorganisms</subject><subject>Metabolism</subject><subject>oxygen</subject><subject>pentose phosphate pathway</subject><subject>Phosphates</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photorespiration</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Plants</subject><subject>Plastids</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Pyruvate carboxylase</subject><subject>Pyruvate phosphate dikinase</subject><subject>pyruvate phosphate dikinase (PPDK)</subject><subject>Pyruvic acid</subject><subject>quantitative proteomics</subject><subject>Regeneration</subject><subject>Regeneration (biological)</subject><subject>Thalassiosira</subject><subject>Thalassiosira pseudonana</subject><subject>Transcription</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kkGP1CAYhonRuOPqwT-gJF68dBdooeVoJqtrMnFN3E28ka8tnTJpoQLNZK4TD_7O_SUyM7t78CAX-OB5Xz7ygtBbSi5oGpd26i8ok0w8QwtaCJlVNC-fowUhrMpEIX6eoVchbAghkgv2Ep0xTgrBy3KB_qzcFi9v7vd77HWYhxiwsRhSAd6DXetR24hdhxvwtbN41BFqN5gw4uhwmKfJ-YiX9_vfeOpddGFnY6-jaR4FEIIZzQDRpCJZ3_YwHPZcMB7wFPTcOgsWXqMXHQxBv3mYz9Hd56vb5XW2uvnydflplXV5xUWmpSBt3pKcAZQtKwtZdbpuqNYauq7mrAYqCZNVU0FVp_d3nRYSeCOgZjkX-Tn6ePKdvPs16xDVaEKjhwGsdnNQVFDGJOEFS-iHf9CNm71N3SnGaU7Kkgv6P-roVREhSaLePVBzPepWTd6M4HfqMYkEXJ6ArRn07umcEnWIWKWI1TFi9e379XGRFNlJsQnR-SeF1dup30U3uLVJzTBSqFxxcrjh_YnvwClYexPU3Q9GKE__gkrGq_wv-SS1lA</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Kustka, Adam B</creator><creator>Milligan, Allen J</creator><creator>Zheng, Haiyan</creator><creator>New, Ashley M</creator><creator>Gates, Colin</creator><creator>Bidle, Kay D</creator><creator>Reinfelder, John R</creator><general>Academic Press</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201411</creationdate><title>Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana</title><author>Kustka, Adam B ; Milligan, Allen J ; Zheng, Haiyan ; New, Ashley M ; Gates, Colin ; Bidle, Kay D ; Reinfelder, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f3856-e960d3d032aa7d27498febc1eeeaffb52ba190298c8a8b028ffe69a5c6ab23563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abundance</topic><topic>Biological assimilation</topic><topic>C4 metabolism</topic><topic>C4 photosynthesis</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon Dioxide - pharmacology</topic><topic>Carbon fixation</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Decarboxylation</topic><topic>Diatoms</topic><topic>Diatoms - drug effects</topic><topic>Diatoms - physiology</topic><topic>Enzymes</topic><topic>fatty acid metabolism</topic><topic>Glycine</topic><topic>Glycine (amino acid)</topic><topic>glycine decarboxylase</topic><topic>Malic enzyme</topic><topic>marine diatoms</topic><topic>Marine microorganisms</topic><topic>Metabolism</topic><topic>oxygen</topic><topic>pentose phosphate pathway</topic><topic>Phosphates</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photorespiration</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Plants</topic><topic>Plastids</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Pyruvate carboxylase</topic><topic>Pyruvate phosphate dikinase</topic><topic>pyruvate phosphate dikinase (PPDK)</topic><topic>Pyruvic acid</topic><topic>quantitative proteomics</topic><topic>Regeneration</topic><topic>Regeneration (biological)</topic><topic>Thalassiosira</topic><topic>Thalassiosira pseudonana</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kustka, Adam B</creatorcontrib><creatorcontrib>Milligan, Allen J</creatorcontrib><creatorcontrib>Zheng, Haiyan</creatorcontrib><creatorcontrib>New, Ashley M</creatorcontrib><creatorcontrib>Gates, Colin</creatorcontrib><creatorcontrib>Bidle, Kay D</creatorcontrib><creatorcontrib>Reinfelder, John R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kustka, Adam B</au><au>Milligan, Allen J</au><au>Zheng, Haiyan</au><au>New, Ashley M</au><au>Gates, Colin</au><au>Bidle, Kay D</au><au>Reinfelder, John R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2014-11</date><risdate>2014</risdate><volume>204</volume><issue>3</issue><spage>507</spage><epage>520</epage><pages>507-520</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The mechanisms of carbon concentration in marine diatoms are controversial. At low CO₂, decreases in O₂ evolution after inhibition of phosphoenolpyruvate carboxylases (PEPCs), and increases in PEPC transcript abundances, have been interpreted as evidence for a C₄ mechanism in Thalassiosira pseudonana, but the ascertainment of which proteins are responsible for the subsequent decarboxylation and PEP regeneration steps has been elusive. We evaluated the responses of T. pseudonana to steady‐state differences in CO₂ availability, as well as to transient shifts to low CO₂, by integrated measurements of photosynthetic parameters, transcript abundances and quantitative proteomics. On shifts to low CO₂, two PEPC transcript abundances increased and then declined on timescales consistent with recoveries of Fᵥ/Fₘ, non‐photochemical quenching (NPQ) and maximum chlorophyll a‐specific carbon fixation (Pₘₐₓ), but transcripts for archetypical decarboxylation enzymes phosphoenolpyruvate carboxykinase (PEPCK) and malic enzyme (ME) did not change. Of 3688 protein abundances measured, 39 were up‐regulated under low CO₂, including both PEPCs and pyruvate carboxylase (PYC), whereas ME abundance did not change and PEPCK abundance declined. We propose a closed‐loop biochemical model, whereby T. pseudonana produces and subsequently decarboxylates a C₄ acid via PEPC₂ and PYC, respectively, regenerates phosphoenolpyruvate (PEP) from pyruvate in a pyruvate phosphate dikinase‐independent (but glycine decarboxylase (GDC)‐dependent) manner, and recuperates photorespiratory CO₂ as oxaloacetate (OAA).</abstract><cop>England</cop><pub>Academic Press</pub><pmid>25046577</pmid><doi>10.1111/nph.12926</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2014-11, Vol.204 (3), p.507-520 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_1612290542 |
source | Wiley-Blackwell Read & Publish Collection; JSTOR |
subjects | Abundance Biological assimilation C4 metabolism C4 photosynthesis Carbon Carbon - metabolism Carbon dioxide Carbon Dioxide - metabolism Carbon Dioxide - pharmacology Carbon fixation Chlorophyll Chlorophyll a Decarboxylation Diatoms Diatoms - drug effects Diatoms - physiology Enzymes fatty acid metabolism Glycine Glycine (amino acid) glycine decarboxylase Malic enzyme marine diatoms Marine microorganisms Metabolism oxygen pentose phosphate pathway Phosphates Photochemicals Photochemistry Photorespiration Photosynthesis Photosynthesis - physiology Plants Plastids Proteins Proteomics Pyruvate carboxylase Pyruvate phosphate dikinase pyruvate phosphate dikinase (PPDK) Pyruvic acid quantitative proteomics Regeneration Regeneration (biological) Thalassiosira Thalassiosira pseudonana Transcription |
title | Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20CO%E2%82%82%20results%20in%20a%20rearrangement%20of%20carbon%20metabolism%20to%20support%20C%E2%82%84%20photosynthetic%20carbon%20assimilation%20in%20Thalassiosira%20pseudonana&rft.jtitle=The%20New%20phytologist&rft.au=Kustka,%20Adam%20B&rft.date=2014-11&rft.volume=204&rft.issue=3&rft.spage=507&rft.epage=520&rft.pages=507-520&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12926&rft_dat=%3Cjstor_proqu%3Enewphytologist.204.3.507%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-f3856-e960d3d032aa7d27498febc1eeeaffb52ba190298c8a8b028ffe69a5c6ab23563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1612280690&rft_id=info:pmid/25046577&rft_jstor_id=newphytologist.204.3.507&rfr_iscdi=true |