Loading…

Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana

The mechanisms of carbon concentration in marine diatoms are controversial. At low CO₂, decreases in O₂ evolution after inhibition of phosphoenolpyruvate carboxylases (PEPCs), and increases in PEPC transcript abundances, have been interpreted as evidence for a C₄ mechanism in Thalassiosira pseudonan...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2014-11, Vol.204 (3), p.507-520
Main Authors: Kustka, Adam B, Milligan, Allen J, Zheng, Haiyan, New, Ashley M, Gates, Colin, Bidle, Kay D, Reinfelder, John R
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 520
container_issue 3
container_start_page 507
container_title The New phytologist
container_volume 204
creator Kustka, Adam B
Milligan, Allen J
Zheng, Haiyan
New, Ashley M
Gates, Colin
Bidle, Kay D
Reinfelder, John R
description The mechanisms of carbon concentration in marine diatoms are controversial. At low CO₂, decreases in O₂ evolution after inhibition of phosphoenolpyruvate carboxylases (PEPCs), and increases in PEPC transcript abundances, have been interpreted as evidence for a C₄ mechanism in Thalassiosira pseudonana, but the ascertainment of which proteins are responsible for the subsequent decarboxylation and PEP regeneration steps has been elusive. We evaluated the responses of T. pseudonana to steady‐state differences in CO₂ availability, as well as to transient shifts to low CO₂, by integrated measurements of photosynthetic parameters, transcript abundances and quantitative proteomics. On shifts to low CO₂, two PEPC transcript abundances increased and then declined on timescales consistent with recoveries of Fᵥ/Fₘ, non‐photochemical quenching (NPQ) and maximum chlorophyll a‐specific carbon fixation (Pₘₐₓ), but transcripts for archetypical decarboxylation enzymes phosphoenolpyruvate carboxykinase (PEPCK) and malic enzyme (ME) did not change. Of 3688 protein abundances measured, 39 were up‐regulated under low CO₂, including both PEPCs and pyruvate carboxylase (PYC), whereas ME abundance did not change and PEPCK abundance declined. We propose a closed‐loop biochemical model, whereby T. pseudonana produces and subsequently decarboxylates a C₄ acid via PEPC₂ and PYC, respectively, regenerates phosphoenolpyruvate (PEP) from pyruvate in a pyruvate phosphate dikinase‐independent (but glycine decarboxylase (GDC)‐dependent) manner, and recuperates photorespiratory CO₂ as oxaloacetate (OAA).
doi_str_mv 10.1111/nph.12926
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1612290542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.204.3.507</jstor_id><sourcerecordid>newphytologist.204.3.507</sourcerecordid><originalsourceid>FETCH-LOGICAL-f3856-e960d3d032aa7d27498febc1eeeaffb52ba190298c8a8b028ffe69a5c6ab23563</originalsourceid><addsrcrecordid>eNp9kkGP1CAYhonRuOPqwT-gJF68dBdooeVoJqtrMnFN3E28ka8tnTJpoQLNZK4TD_7O_SUyM7t78CAX-OB5Xz7ygtBbSi5oGpd26i8ok0w8QwtaCJlVNC-fowUhrMpEIX6eoVchbAghkgv2Ep0xTgrBy3KB_qzcFi9v7vd77HWYhxiwsRhSAd6DXetR24hdhxvwtbN41BFqN5gw4uhwmKfJ-YiX9_vfeOpddGFnY6-jaR4FEIIZzQDRpCJZ3_YwHPZcMB7wFPTcOgsWXqMXHQxBv3mYz9Hd56vb5XW2uvnydflplXV5xUWmpSBt3pKcAZQtKwtZdbpuqNYauq7mrAYqCZNVU0FVp_d3nRYSeCOgZjkX-Tn6ePKdvPs16xDVaEKjhwGsdnNQVFDGJOEFS-iHf9CNm71N3SnGaU7Kkgv6P-roVREhSaLePVBzPepWTd6M4HfqMYkEXJ6ArRn07umcEnWIWKWI1TFi9e379XGRFNlJsQnR-SeF1dup30U3uLVJzTBSqFxxcrjh_YnvwClYexPU3Q9GKE__gkrGq_wv-SS1lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612280690</pqid></control><display><type>article</type><title>Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>JSTOR</source><creator>Kustka, Adam B ; Milligan, Allen J ; Zheng, Haiyan ; New, Ashley M ; Gates, Colin ; Bidle, Kay D ; Reinfelder, John R</creator><creatorcontrib>Kustka, Adam B ; Milligan, Allen J ; Zheng, Haiyan ; New, Ashley M ; Gates, Colin ; Bidle, Kay D ; Reinfelder, John R</creatorcontrib><description>The mechanisms of carbon concentration in marine diatoms are controversial. At low CO₂, decreases in O₂ evolution after inhibition of phosphoenolpyruvate carboxylases (PEPCs), and increases in PEPC transcript abundances, have been interpreted as evidence for a C₄ mechanism in Thalassiosira pseudonana, but the ascertainment of which proteins are responsible for the subsequent decarboxylation and PEP regeneration steps has been elusive. We evaluated the responses of T. pseudonana to steady‐state differences in CO₂ availability, as well as to transient shifts to low CO₂, by integrated measurements of photosynthetic parameters, transcript abundances and quantitative proteomics. On shifts to low CO₂, two PEPC transcript abundances increased and then declined on timescales consistent with recoveries of Fᵥ/Fₘ, non‐photochemical quenching (NPQ) and maximum chlorophyll a‐specific carbon fixation (Pₘₐₓ), but transcripts for archetypical decarboxylation enzymes phosphoenolpyruvate carboxykinase (PEPCK) and malic enzyme (ME) did not change. Of 3688 protein abundances measured, 39 were up‐regulated under low CO₂, including both PEPCs and pyruvate carboxylase (PYC), whereas ME abundance did not change and PEPCK abundance declined. We propose a closed‐loop biochemical model, whereby T. pseudonana produces and subsequently decarboxylates a C₄ acid via PEPC₂ and PYC, respectively, regenerates phosphoenolpyruvate (PEP) from pyruvate in a pyruvate phosphate dikinase‐independent (but glycine decarboxylase (GDC)‐dependent) manner, and recuperates photorespiratory CO₂ as oxaloacetate (OAA).</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12926</identifier><identifier>PMID: 25046577</identifier><language>eng</language><publisher>England: Academic Press</publisher><subject>Abundance ; Biological assimilation ; C4 metabolism ; C4 photosynthesis ; Carbon ; Carbon - metabolism ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon Dioxide - pharmacology ; Carbon fixation ; Chlorophyll ; Chlorophyll a ; Decarboxylation ; Diatoms ; Diatoms - drug effects ; Diatoms - physiology ; Enzymes ; fatty acid metabolism ; Glycine ; Glycine (amino acid) ; glycine decarboxylase ; Malic enzyme ; marine diatoms ; Marine microorganisms ; Metabolism ; oxygen ; pentose phosphate pathway ; Phosphates ; Photochemicals ; Photochemistry ; Photorespiration ; Photosynthesis ; Photosynthesis - physiology ; Plants ; Plastids ; Proteins ; Proteomics ; Pyruvate carboxylase ; Pyruvate phosphate dikinase ; pyruvate phosphate dikinase (PPDK) ; Pyruvic acid ; quantitative proteomics ; Regeneration ; Regeneration (biological) ; Thalassiosira ; Thalassiosira pseudonana ; Transcription</subject><ispartof>The New phytologist, 2014-11, Vol.204 (3), p.507-520</ispartof><rights>2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust.</rights><rights>Copyright © 2014 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.204.3.507$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.204.3.507$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25046577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kustka, Adam B</creatorcontrib><creatorcontrib>Milligan, Allen J</creatorcontrib><creatorcontrib>Zheng, Haiyan</creatorcontrib><creatorcontrib>New, Ashley M</creatorcontrib><creatorcontrib>Gates, Colin</creatorcontrib><creatorcontrib>Bidle, Kay D</creatorcontrib><creatorcontrib>Reinfelder, John R</creatorcontrib><title>Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The mechanisms of carbon concentration in marine diatoms are controversial. At low CO₂, decreases in O₂ evolution after inhibition of phosphoenolpyruvate carboxylases (PEPCs), and increases in PEPC transcript abundances, have been interpreted as evidence for a C₄ mechanism in Thalassiosira pseudonana, but the ascertainment of which proteins are responsible for the subsequent decarboxylation and PEP regeneration steps has been elusive. We evaluated the responses of T. pseudonana to steady‐state differences in CO₂ availability, as well as to transient shifts to low CO₂, by integrated measurements of photosynthetic parameters, transcript abundances and quantitative proteomics. On shifts to low CO₂, two PEPC transcript abundances increased and then declined on timescales consistent with recoveries of Fᵥ/Fₘ, non‐photochemical quenching (NPQ) and maximum chlorophyll a‐specific carbon fixation (Pₘₐₓ), but transcripts for archetypical decarboxylation enzymes phosphoenolpyruvate carboxykinase (PEPCK) and malic enzyme (ME) did not change. Of 3688 protein abundances measured, 39 were up‐regulated under low CO₂, including both PEPCs and pyruvate carboxylase (PYC), whereas ME abundance did not change and PEPCK abundance declined. We propose a closed‐loop biochemical model, whereby T. pseudonana produces and subsequently decarboxylates a C₄ acid via PEPC₂ and PYC, respectively, regenerates phosphoenolpyruvate (PEP) from pyruvate in a pyruvate phosphate dikinase‐independent (but glycine decarboxylase (GDC)‐dependent) manner, and recuperates photorespiratory CO₂ as oxaloacetate (OAA).</description><subject>Abundance</subject><subject>Biological assimilation</subject><subject>C4 metabolism</subject><subject>C4 photosynthesis</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon Dioxide - pharmacology</subject><subject>Carbon fixation</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Decarboxylation</subject><subject>Diatoms</subject><subject>Diatoms - drug effects</subject><subject>Diatoms - physiology</subject><subject>Enzymes</subject><subject>fatty acid metabolism</subject><subject>Glycine</subject><subject>Glycine (amino acid)</subject><subject>glycine decarboxylase</subject><subject>Malic enzyme</subject><subject>marine diatoms</subject><subject>Marine microorganisms</subject><subject>Metabolism</subject><subject>oxygen</subject><subject>pentose phosphate pathway</subject><subject>Phosphates</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photorespiration</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Plants</subject><subject>Plastids</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Pyruvate carboxylase</subject><subject>Pyruvate phosphate dikinase</subject><subject>pyruvate phosphate dikinase (PPDK)</subject><subject>Pyruvic acid</subject><subject>quantitative proteomics</subject><subject>Regeneration</subject><subject>Regeneration (biological)</subject><subject>Thalassiosira</subject><subject>Thalassiosira pseudonana</subject><subject>Transcription</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kkGP1CAYhonRuOPqwT-gJF68dBdooeVoJqtrMnFN3E28ka8tnTJpoQLNZK4TD_7O_SUyM7t78CAX-OB5Xz7ygtBbSi5oGpd26i8ok0w8QwtaCJlVNC-fowUhrMpEIX6eoVchbAghkgv2Ep0xTgrBy3KB_qzcFi9v7vd77HWYhxiwsRhSAd6DXetR24hdhxvwtbN41BFqN5gw4uhwmKfJ-YiX9_vfeOpddGFnY6-jaR4FEIIZzQDRpCJZ3_YwHPZcMB7wFPTcOgsWXqMXHQxBv3mYz9Hd56vb5XW2uvnydflplXV5xUWmpSBt3pKcAZQtKwtZdbpuqNYauq7mrAYqCZNVU0FVp_d3nRYSeCOgZjkX-Tn6ePKdvPs16xDVaEKjhwGsdnNQVFDGJOEFS-iHf9CNm71N3SnGaU7Kkgv6P-roVREhSaLePVBzPepWTd6M4HfqMYkEXJ6ArRn07umcEnWIWKWI1TFi9e379XGRFNlJsQnR-SeF1dup30U3uLVJzTBSqFxxcrjh_YnvwClYexPU3Q9GKE__gkrGq_wv-SS1lA</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Kustka, Adam B</creator><creator>Milligan, Allen J</creator><creator>Zheng, Haiyan</creator><creator>New, Ashley M</creator><creator>Gates, Colin</creator><creator>Bidle, Kay D</creator><creator>Reinfelder, John R</creator><general>Academic Press</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201411</creationdate><title>Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana</title><author>Kustka, Adam B ; Milligan, Allen J ; Zheng, Haiyan ; New, Ashley M ; Gates, Colin ; Bidle, Kay D ; Reinfelder, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f3856-e960d3d032aa7d27498febc1eeeaffb52ba190298c8a8b028ffe69a5c6ab23563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abundance</topic><topic>Biological assimilation</topic><topic>C4 metabolism</topic><topic>C4 photosynthesis</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon Dioxide - pharmacology</topic><topic>Carbon fixation</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Decarboxylation</topic><topic>Diatoms</topic><topic>Diatoms - drug effects</topic><topic>Diatoms - physiology</topic><topic>Enzymes</topic><topic>fatty acid metabolism</topic><topic>Glycine</topic><topic>Glycine (amino acid)</topic><topic>glycine decarboxylase</topic><topic>Malic enzyme</topic><topic>marine diatoms</topic><topic>Marine microorganisms</topic><topic>Metabolism</topic><topic>oxygen</topic><topic>pentose phosphate pathway</topic><topic>Phosphates</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photorespiration</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Plants</topic><topic>Plastids</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Pyruvate carboxylase</topic><topic>Pyruvate phosphate dikinase</topic><topic>pyruvate phosphate dikinase (PPDK)</topic><topic>Pyruvic acid</topic><topic>quantitative proteomics</topic><topic>Regeneration</topic><topic>Regeneration (biological)</topic><topic>Thalassiosira</topic><topic>Thalassiosira pseudonana</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kustka, Adam B</creatorcontrib><creatorcontrib>Milligan, Allen J</creatorcontrib><creatorcontrib>Zheng, Haiyan</creatorcontrib><creatorcontrib>New, Ashley M</creatorcontrib><creatorcontrib>Gates, Colin</creatorcontrib><creatorcontrib>Bidle, Kay D</creatorcontrib><creatorcontrib>Reinfelder, John R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kustka, Adam B</au><au>Milligan, Allen J</au><au>Zheng, Haiyan</au><au>New, Ashley M</au><au>Gates, Colin</au><au>Bidle, Kay D</au><au>Reinfelder, John R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2014-11</date><risdate>2014</risdate><volume>204</volume><issue>3</issue><spage>507</spage><epage>520</epage><pages>507-520</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The mechanisms of carbon concentration in marine diatoms are controversial. At low CO₂, decreases in O₂ evolution after inhibition of phosphoenolpyruvate carboxylases (PEPCs), and increases in PEPC transcript abundances, have been interpreted as evidence for a C₄ mechanism in Thalassiosira pseudonana, but the ascertainment of which proteins are responsible for the subsequent decarboxylation and PEP regeneration steps has been elusive. We evaluated the responses of T. pseudonana to steady‐state differences in CO₂ availability, as well as to transient shifts to low CO₂, by integrated measurements of photosynthetic parameters, transcript abundances and quantitative proteomics. On shifts to low CO₂, two PEPC transcript abundances increased and then declined on timescales consistent with recoveries of Fᵥ/Fₘ, non‐photochemical quenching (NPQ) and maximum chlorophyll a‐specific carbon fixation (Pₘₐₓ), but transcripts for archetypical decarboxylation enzymes phosphoenolpyruvate carboxykinase (PEPCK) and malic enzyme (ME) did not change. Of 3688 protein abundances measured, 39 were up‐regulated under low CO₂, including both PEPCs and pyruvate carboxylase (PYC), whereas ME abundance did not change and PEPCK abundance declined. We propose a closed‐loop biochemical model, whereby T. pseudonana produces and subsequently decarboxylates a C₄ acid via PEPC₂ and PYC, respectively, regenerates phosphoenolpyruvate (PEP) from pyruvate in a pyruvate phosphate dikinase‐independent (but glycine decarboxylase (GDC)‐dependent) manner, and recuperates photorespiratory CO₂ as oxaloacetate (OAA).</abstract><cop>England</cop><pub>Academic Press</pub><pmid>25046577</pmid><doi>10.1111/nph.12926</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2014-11, Vol.204 (3), p.507-520
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1612290542
source Wiley-Blackwell Read & Publish Collection; JSTOR
subjects Abundance
Biological assimilation
C4 metabolism
C4 photosynthesis
Carbon
Carbon - metabolism
Carbon dioxide
Carbon Dioxide - metabolism
Carbon Dioxide - pharmacology
Carbon fixation
Chlorophyll
Chlorophyll a
Decarboxylation
Diatoms
Diatoms - drug effects
Diatoms - physiology
Enzymes
fatty acid metabolism
Glycine
Glycine (amino acid)
glycine decarboxylase
Malic enzyme
marine diatoms
Marine microorganisms
Metabolism
oxygen
pentose phosphate pathway
Phosphates
Photochemicals
Photochemistry
Photorespiration
Photosynthesis
Photosynthesis - physiology
Plants
Plastids
Proteins
Proteomics
Pyruvate carboxylase
Pyruvate phosphate dikinase
pyruvate phosphate dikinase (PPDK)
Pyruvic acid
quantitative proteomics
Regeneration
Regeneration (biological)
Thalassiosira
Thalassiosira pseudonana
Transcription
title Low CO₂ results in a rearrangement of carbon metabolism to support C₄ photosynthetic carbon assimilation in Thalassiosira pseudonana
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20CO%E2%82%82%20results%20in%20a%20rearrangement%20of%20carbon%20metabolism%20to%20support%20C%E2%82%84%20photosynthetic%20carbon%20assimilation%20in%20Thalassiosira%20pseudonana&rft.jtitle=The%20New%20phytologist&rft.au=Kustka,%20Adam%20B&rft.date=2014-11&rft.volume=204&rft.issue=3&rft.spage=507&rft.epage=520&rft.pages=507-520&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12926&rft_dat=%3Cjstor_proqu%3Enewphytologist.204.3.507%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-f3856-e960d3d032aa7d27498febc1eeeaffb52ba190298c8a8b028ffe69a5c6ab23563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1612280690&rft_id=info:pmid/25046577&rft_jstor_id=newphytologist.204.3.507&rfr_iscdi=true