Loading…
Biodegradation of soluble aromatic compounds of jet fuel under anaerobic conditions: laboratory batch experiments
Laboratory batch experiments were performed with contaminated aquifer sediments and four soluble aromatic components of jet fuel to assess their biodegradation under anaerobic conditions. The biodegradation of four aromatic compounds, toluene, o-xylene, 1,2,4-trimethylbenzene (TMB), and naphthalene,...
Saved in:
Published in: | Applied microbiology and biotechnology 2001-11, Vol.57 (4), p.572-578 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Laboratory batch experiments were performed with contaminated aquifer sediments and four soluble aromatic components of jet fuel to assess their biodegradation under anaerobic conditions. The biodegradation of four aromatic compounds, toluene, o-xylene, 1,2,4-trimethylbenzene (TMB), and naphthalene, separately or together, was investigated under strictly anaerobic conditions in the dark for a period of 160 days. Of the aromatic compounds, toluene and o-xylene were degraded both as a single substrate and in a mixture with the other aromatic compounds, while TMB was not biodegraded as a single substrate, but was biodegraded in the presence of the other aromatic hydrocarbons. Substrate interaction is thus significant in the biodegradation of TMB. Biodegradation of naphthalene was not observed, either as a single substrate or in a mixture of other aromatic hydrocarbons. Although redox conditions were dominated by iron reduction, a clear relation between degradation and sulfate reduction was observed. Methanogenesis took place during the later stages of incubation. However, the large background of Fe(II) masked the increase of Fe(II) concentration due to iron reduction. Thus, although microbial reduction of Fe(III) is an important process, the evidence is not conclusive. Our results have shown that a better understanding of the degradation of complex mixtures of hydrocarbons under anaerobic conditions is important in the application of natural attenuation as a remedial method for soil and groundwater contamination. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s002530100805 |