Loading…

Constancy in an Inconstant World: Moving Beyond Constant Temperatures in the Study of Reptilian Incubation

Variable environmental conditions can alter the phenotype of offspring, particularly in ectothermic species such as reptiles. Despite this, the majority of studies on development in reptiles have been carried out under constant conditions in the laboratory, raising the question of just how applicabl...

Full description

Saved in:
Bibliographic Details
Published in:Integrative and comparative biology 2014-11, Vol.54 (5), p.830-840
Main Authors: Bowden, Rachel M., Carter, Amanda W., Paitz, Ryan T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Variable environmental conditions can alter the phenotype of offspring, particularly in ectothermic species such as reptiles. Despite this, the majority of studies on development in reptiles have been carried out under constant conditions in the laboratory, raising the question of just how applicable those investigations are to natural conditions? Here, we first review what we have learned from these constant-temperature studies. Second, we examine the importance of temperature fluctuations for development in reptiles and highlight the outcomes of studies conducted under fluctuating conditions. Next, we report our findings from a new study that examines how the frequency of fluctuations in temperature experienced during development affects phenotype. Finally, we suggest some areas in need of additional research so that we can better understand the complex interactions of temperature and physiology, particularly in species with temperature-dependent sex determination. For questions aimed at understanding the complex effects of the environment on phenotype, we must move toward studies that better capture environmental variation. By taking such an approach, it may be possible to predict more accurately how these thermally sensitive organisms will respond to environmental perturbations, including climatic change.
ISSN:1540-7063
1557-7023
DOI:10.1093/icb/icu016