Loading…
The enzymology of sludge solubilisation utilising sulphate-reducing systems: the properties of lipases
The first stage in the degradation and recycling of particulate organic matter is the solubilisation and enhanced hydrolysis of complex polymeric organic carbon structures associated with the sulphidogenic environment. An investigation into the enzymology of these processes has shown that lipase enz...
Saved in:
Published in: | Water research (Oxford) 2003, Vol.37 (2), p.289-296 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The first stage in the degradation and recycling of particulate organic matter is the solubilisation and enhanced hydrolysis of complex polymeric organic carbon structures associated with the sulphidogenic environment. An investigation into the enzymology of these processes has shown that lipase enzyme activities were found predominantly associated with the organic particulate matter of the sewage sludge. Sonication of the sludge gave an increase in enzyme activity as the enzymes were released into the supernatant. pH and temperature optimisation studies showed optima between 6.5 and 8 and 50–60°C, respectively. All the lipase enzymes from the methanogenic bioreactors indicated extensive stability for at least an hour at their respective optimum temperatures and pH; sulphidogenic lipases reflected limited stability at these temperatures and pH during this time period. Though sulphate showed inhibitory properties towards lipases both sulphide and sulphite appeared to enhance the activity of the enzymes. It is argued that these sulphur species, liberated at different times during the sulphate reduction process, disrupt the integrity of the organic particulate floc by neutralising acidic components on the surface. The release of further entrapped enzymes from the organic particulate matter result in a subsequent enhancement of hydrolysis of polymeric material. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/S0043-1354(02)00281-6 |