Loading…

Optimal design for dispersion experiment

The dispersion coefficient ( D) is a very important parameter for the management of water quality and pollution control. Conventional sampling methods are based on tracer studies. Sampling periods and intervals are often subjective and left to the choice of the experimenter. Sometimes several observ...

Full description

Saved in:
Bibliographic Details
Published in:Water research (Oxford) 2002-11, Vol.36 (18), p.4570-4582
Main Author: Agunwamba, J.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-ec9da08dabf84ac9b40f89f6fe14b2db1db1eeb9e9866ac8113f1295209fd9303
cites cdi_FETCH-LOGICAL-c422t-ec9da08dabf84ac9b40f89f6fe14b2db1db1eeb9e9866ac8113f1295209fd9303
container_end_page 4582
container_issue 18
container_start_page 4570
container_title Water research (Oxford)
container_volume 36
creator Agunwamba, J.C.
description The dispersion coefficient ( D) is a very important parameter for the management of water quality and pollution control. Conventional sampling methods are based on tracer studies. Sampling periods and intervals are often subjective and left to the choice of the experimenter. Sometimes several observations are made to determine D. Yet, making several observations does not necessarily ensure accurate estimation of the parameters. Sampling of tracer concentrations at poor times will result in inaccurate estimates of D and the flow velocity ( u). Therefore, the main aim of the study in question was to investigate the optimal sampling times for conducting fixed position variable-time sampling for tracer concentration experiments. This objective was achieved by the minimization of the least square criterion and applying the method proposed by Box and Lucas. The relative efficiency of each experimental design is predicted before data collection and analysis and confidence regions plotted. Results, on optimal sampling times for experiments are presented and illustrated. The application of these findings will harmonize results and reduce cost and labour expended on dispersion experiments.
doi_str_mv 10.1016/S0043-1354(02)00170-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16145384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135402001707</els_id><sourcerecordid>16145384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-ec9da08dabf84ac9b40f89f6fe14b2db1db1eeb9e9866ac8113f1295209fd9303</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo7rr6E5RelPVQnaTpR04ii1-wsAf1HNJkIpFuW5Ou6L83-4EehcDk8MzMOw8hpxSuKNDi-hmAZynNcj4FdglAS0jLPTKmVSlSxnm1T8a_yIgchfAOAIxl4pCMKOO0KgoYk-miH9xSNYnB4N7axHY-MS706IPr2gS_4s8tsR2OyYFVTcCTXZ2Q1_u7l9ljOl88PM1u56nmjA0pamEUVEbVtuJKi5qDrYQtLFJeM1PT-BBrgSLuV7qiNLOUiZyBsEZkkE3IxXZu77uPFYZBLl3Q2DSqxW4VJC0oz7OKRzDfgtp3IXi0so9Jlf-WFORakdwokuv7JTC5USTL2He2W7Cql2j-unZOInC-A1TQqrFetdqFPy6LMUUUOSE3Ww6jjk-HXgbtsNVonEc9SNO5f6L8AAT7gi8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16145384</pqid></control><display><type>article</type><title>Optimal design for dispersion experiment</title><source>ScienceDirect Freedom Collection</source><creator>Agunwamba, J.C.</creator><creatorcontrib>Agunwamba, J.C.</creatorcontrib><description>The dispersion coefficient ( D) is a very important parameter for the management of water quality and pollution control. Conventional sampling methods are based on tracer studies. Sampling periods and intervals are often subjective and left to the choice of the experimenter. Sometimes several observations are made to determine D. Yet, making several observations does not necessarily ensure accurate estimation of the parameters. Sampling of tracer concentrations at poor times will result in inaccurate estimates of D and the flow velocity ( u). Therefore, the main aim of the study in question was to investigate the optimal sampling times for conducting fixed position variable-time sampling for tracer concentration experiments. This objective was achieved by the minimization of the least square criterion and applying the method proposed by Box and Lucas. The relative efficiency of each experimental design is predicted before data collection and analysis and confidence regions plotted. Results, on optimal sampling times for experiments are presented and illustrated. The application of these findings will harmonize results and reduce cost and labour expended on dispersion experiments.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/S0043-1354(02)00170-7</identifier><identifier>PMID: 12418660</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Continental surface waters ; Dispersion experiment ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Forecasting ; Hydrology ; Hydrology. Hydrogeology ; Least square criterion ; Models, Theoretical ; Natural water pollution ; Optimal design ; Pollution ; Pollution, environment geology ; Research Design ; Water Movements ; Water Pollutants ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2002-11, Vol.36 (18), p.4570-4582</ispartof><rights>2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-ec9da08dabf84ac9b40f89f6fe14b2db1db1eeb9e9866ac8113f1295209fd9303</citedby><cites>FETCH-LOGICAL-c422t-ec9da08dabf84ac9b40f89f6fe14b2db1db1eeb9e9866ac8113f1295209fd9303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13930922$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12418660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agunwamba, J.C.</creatorcontrib><title>Optimal design for dispersion experiment</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>The dispersion coefficient ( D) is a very important parameter for the management of water quality and pollution control. Conventional sampling methods are based on tracer studies. Sampling periods and intervals are often subjective and left to the choice of the experimenter. Sometimes several observations are made to determine D. Yet, making several observations does not necessarily ensure accurate estimation of the parameters. Sampling of tracer concentrations at poor times will result in inaccurate estimates of D and the flow velocity ( u). Therefore, the main aim of the study in question was to investigate the optimal sampling times for conducting fixed position variable-time sampling for tracer concentration experiments. This objective was achieved by the minimization of the least square criterion and applying the method proposed by Box and Lucas. The relative efficiency of each experimental design is predicted before data collection and analysis and confidence regions plotted. Results, on optimal sampling times for experiments are presented and illustrated. The application of these findings will harmonize results and reduce cost and labour expended on dispersion experiments.</description><subject>Applied sciences</subject><subject>Continental surface waters</subject><subject>Dispersion experiment</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Least square criterion</subject><subject>Models, Theoretical</subject><subject>Natural water pollution</subject><subject>Optimal design</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Research Design</subject><subject>Water Movements</subject><subject>Water Pollutants</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMo7rr6E5RelPVQnaTpR04ii1-wsAf1HNJkIpFuW5Ou6L83-4EehcDk8MzMOw8hpxSuKNDi-hmAZynNcj4FdglAS0jLPTKmVSlSxnm1T8a_yIgchfAOAIxl4pCMKOO0KgoYk-miH9xSNYnB4N7axHY-MS706IPr2gS_4s8tsR2OyYFVTcCTXZ2Q1_u7l9ljOl88PM1u56nmjA0pamEUVEbVtuJKi5qDrYQtLFJeM1PT-BBrgSLuV7qiNLOUiZyBsEZkkE3IxXZu77uPFYZBLl3Q2DSqxW4VJC0oz7OKRzDfgtp3IXi0so9Jlf-WFORakdwokuv7JTC5USTL2He2W7Cql2j-unZOInC-A1TQqrFetdqFPy6LMUUUOSE3Ww6jjk-HXgbtsNVonEc9SNO5f6L8AAT7gi8</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Agunwamba, J.C.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20021101</creationdate><title>Optimal design for dispersion experiment</title><author>Agunwamba, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-ec9da08dabf84ac9b40f89f6fe14b2db1db1eeb9e9866ac8113f1295209fd9303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Continental surface waters</topic><topic>Dispersion experiment</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Least square criterion</topic><topic>Models, Theoretical</topic><topic>Natural water pollution</topic><topic>Optimal design</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Research Design</topic><topic>Water Movements</topic><topic>Water Pollutants</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agunwamba, J.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agunwamba, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design for dispersion experiment</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2002-11-01</date><risdate>2002</risdate><volume>36</volume><issue>18</issue><spage>4570</spage><epage>4582</epage><pages>4570-4582</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>The dispersion coefficient ( D) is a very important parameter for the management of water quality and pollution control. Conventional sampling methods are based on tracer studies. Sampling periods and intervals are often subjective and left to the choice of the experimenter. Sometimes several observations are made to determine D. Yet, making several observations does not necessarily ensure accurate estimation of the parameters. Sampling of tracer concentrations at poor times will result in inaccurate estimates of D and the flow velocity ( u). Therefore, the main aim of the study in question was to investigate the optimal sampling times for conducting fixed position variable-time sampling for tracer concentration experiments. This objective was achieved by the minimization of the least square criterion and applying the method proposed by Box and Lucas. The relative efficiency of each experimental design is predicted before data collection and analysis and confidence regions plotted. Results, on optimal sampling times for experiments are presented and illustrated. The application of these findings will harmonize results and reduce cost and labour expended on dispersion experiments.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>12418660</pmid><doi>10.1016/S0043-1354(02)00170-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2002-11, Vol.36 (18), p.4570-4582
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_16145384
source ScienceDirect Freedom Collection
subjects Applied sciences
Continental surface waters
Dispersion experiment
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Forecasting
Hydrology
Hydrology. Hydrogeology
Least square criterion
Models, Theoretical
Natural water pollution
Optimal design
Pollution
Pollution, environment geology
Research Design
Water Movements
Water Pollutants
Water treatment and pollution
title Optimal design for dispersion experiment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20for%20dispersion%20experiment&rft.jtitle=Water%20research%20(Oxford)&rft.au=Agunwamba,%20J.C.&rft.date=2002-11-01&rft.volume=36&rft.issue=18&rft.spage=4570&rft.epage=4582&rft.pages=4570-4582&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/S0043-1354(02)00170-7&rft_dat=%3Cproquest_cross%3E16145384%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-ec9da08dabf84ac9b40f89f6fe14b2db1db1eeb9e9866ac8113f1295209fd9303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16145384&rft_id=info:pmid/12418660&rfr_iscdi=true