Loading…
Changes in the chemistry of lakes and precipitation in high-elevation national parks in the western United States, 1985-1999
High‐elevation lakes in the western United States are sensitive to atmospheric deposition of sulfur and nitrogen due to fast hydrologic flushing rates, short growing seasons, an abundance of exposed bedrock, and a lack of well‐developed soils. This sensitivity is reflected in the dilute chemistry of...
Saved in:
Published in: | Water resources research 2003-06, Vol.39 (6), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4068-c5927e7ef79ea94c33f9e3a206ddcacef073c5a66868e259ab387646a0ee09943 |
---|---|
cites | cdi_FETCH-LOGICAL-a4068-c5927e7ef79ea94c33f9e3a206ddcacef073c5a66868e259ab387646a0ee09943 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | |
container_title | Water resources research |
container_volume | 39 |
creator | Clow, David W. Sickman, James O. Striegl, Robert G. Krabbenhoft, David P. Elliott, John G. Dornblaser, Mark Roth, David A. Campbell, Donald H. |
description | High‐elevation lakes in the western United States are sensitive to atmospheric deposition of sulfur and nitrogen due to fast hydrologic flushing rates, short growing seasons, an abundance of exposed bedrock, and a lack of well‐developed soils. This sensitivity is reflected in the dilute chemistry of the lakes, which was documented in the U.S. Environmental Protection Agency's Western Lake Survey of 1985. Sixty‐nine lakes in seven national parks sampled during the 1985 survey were resampled during fall 1999 to investigate possible decadal‐scale changes in lake chemistry. In most lakes, SO4 concentrations were slightly lower in 1999 than in 1985, consistent with a regional decrease in precipitation SO4 concentrations and in SO2 emissions in the western United States. Nitrate concentrations also tended to be slightly lower in 1999 than in 1985, in contrast with generally stable or increasing inorganic N deposition in the west. Differences in alkalinity were variable among parks but were relatively consistent within each park. Possible effects of annual and seasonal‐scale variations in precipitation amount on lake chemistry were evaluated based on climate data available for the parks and an analysis of climatic effects at two research watersheds with long‐term records. Results suggest that rain prior to sampling in 1985 may have caused elevated NO3 in some lakes due to direct runoff of precipitation and flushing of NO3 from alpine soils, which may explain some of the decrease in NO3 concentrations observed in survey lakes. |
doi_str_mv | 10.1029/2002WR001533 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16157117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16157117</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4068-c5927e7ef79ea94c33f9e3a206ddcacef073c5a66868e259ab387646a0ee09943</originalsourceid><addsrcrecordid>eNp9kM1P3DAQxa2KSl0ot_4BPnEi1I6_MsdqRRfQAuoWtEfLeCfEJSTBDh8r9Y-vaRDqqacnzfze08wj5AtnR5yV8LVkrFyvGONKiA9kxkHKwoARO2TGmBQFF2A-kd2UfmVGKm1m5Pe8cd0tJho6OjZIfYP3IY1xS_uatu4ub1y3oUNEH4YwujH03SvbhNumwBafpkn3V1xLBxfv3sOeMY0YO3rdhRE39Ge2YzqkHCpVcAD4TD7Wrk24_6Z75Pr78dX8pFheLk7n35aFk0xXhVdQGjRYG0AH0gtRAwpXMr3ZeOexZkZ45bSudIWlAncjKqOldgyRAUixRw6m3CH2D4_5KJt_9Ni2rsP-MVmuuTKcmwweTqCPfUoRazvEcO_i1nJmXyu2_1ac8XLCn0OL2_-ydr2ar0CqKpuKyZRrxpd3U-7NaiOMsuuLhdU_quUZrLU9F38ACdmMPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16157117</pqid></control><display><type>article</type><title>Changes in the chemistry of lakes and precipitation in high-elevation national parks in the western United States, 1985-1999</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Clow, David W. ; Sickman, James O. ; Striegl, Robert G. ; Krabbenhoft, David P. ; Elliott, John G. ; Dornblaser, Mark ; Roth, David A. ; Campbell, Donald H.</creator><creatorcontrib>Clow, David W. ; Sickman, James O. ; Striegl, Robert G. ; Krabbenhoft, David P. ; Elliott, John G. ; Dornblaser, Mark ; Roth, David A. ; Campbell, Donald H.</creatorcontrib><description>High‐elevation lakes in the western United States are sensitive to atmospheric deposition of sulfur and nitrogen due to fast hydrologic flushing rates, short growing seasons, an abundance of exposed bedrock, and a lack of well‐developed soils. This sensitivity is reflected in the dilute chemistry of the lakes, which was documented in the U.S. Environmental Protection Agency's Western Lake Survey of 1985. Sixty‐nine lakes in seven national parks sampled during the 1985 survey were resampled during fall 1999 to investigate possible decadal‐scale changes in lake chemistry. In most lakes, SO4 concentrations were slightly lower in 1999 than in 1985, consistent with a regional decrease in precipitation SO4 concentrations and in SO2 emissions in the western United States. Nitrate concentrations also tended to be slightly lower in 1999 than in 1985, in contrast with generally stable or increasing inorganic N deposition in the west. Differences in alkalinity were variable among parks but were relatively consistent within each park. Possible effects of annual and seasonal‐scale variations in precipitation amount on lake chemistry were evaluated based on climate data available for the parks and an analysis of climatic effects at two research watersheds with long‐term records. Results suggest that rain prior to sampling in 1985 may have caused elevated NO3 in some lakes due to direct runoff of precipitation and flushing of NO3 from alpine soils, which may explain some of the decrease in NO3 concentrations observed in survey lakes.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2002WR001533</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>alpine ; atmospheric deposition ; emissions ; Freshwater ; lake chemistry ; monitoring ; talus ; USA, western</subject><ispartof>Water resources research, 2003-06, Vol.39 (6), p.n/a</ispartof><rights>Copyright 2003 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4068-c5927e7ef79ea94c33f9e3a206ddcacef073c5a66868e259ab387646a0ee09943</citedby><cites>FETCH-LOGICAL-a4068-c5927e7ef79ea94c33f9e3a206ddcacef073c5a66868e259ab387646a0ee09943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2002WR001533$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2002WR001533$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Clow, David W.</creatorcontrib><creatorcontrib>Sickman, James O.</creatorcontrib><creatorcontrib>Striegl, Robert G.</creatorcontrib><creatorcontrib>Krabbenhoft, David P.</creatorcontrib><creatorcontrib>Elliott, John G.</creatorcontrib><creatorcontrib>Dornblaser, Mark</creatorcontrib><creatorcontrib>Roth, David A.</creatorcontrib><creatorcontrib>Campbell, Donald H.</creatorcontrib><title>Changes in the chemistry of lakes and precipitation in high-elevation national parks in the western United States, 1985-1999</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>High‐elevation lakes in the western United States are sensitive to atmospheric deposition of sulfur and nitrogen due to fast hydrologic flushing rates, short growing seasons, an abundance of exposed bedrock, and a lack of well‐developed soils. This sensitivity is reflected in the dilute chemistry of the lakes, which was documented in the U.S. Environmental Protection Agency's Western Lake Survey of 1985. Sixty‐nine lakes in seven national parks sampled during the 1985 survey were resampled during fall 1999 to investigate possible decadal‐scale changes in lake chemistry. In most lakes, SO4 concentrations were slightly lower in 1999 than in 1985, consistent with a regional decrease in precipitation SO4 concentrations and in SO2 emissions in the western United States. Nitrate concentrations also tended to be slightly lower in 1999 than in 1985, in contrast with generally stable or increasing inorganic N deposition in the west. Differences in alkalinity were variable among parks but were relatively consistent within each park. Possible effects of annual and seasonal‐scale variations in precipitation amount on lake chemistry were evaluated based on climate data available for the parks and an analysis of climatic effects at two research watersheds with long‐term records. Results suggest that rain prior to sampling in 1985 may have caused elevated NO3 in some lakes due to direct runoff of precipitation and flushing of NO3 from alpine soils, which may explain some of the decrease in NO3 concentrations observed in survey lakes.</description><subject>alpine</subject><subject>atmospheric deposition</subject><subject>emissions</subject><subject>Freshwater</subject><subject>lake chemistry</subject><subject>monitoring</subject><subject>talus</subject><subject>USA, western</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kM1P3DAQxa2KSl0ot_4BPnEi1I6_MsdqRRfQAuoWtEfLeCfEJSTBDh8r9Y-vaRDqqacnzfze08wj5AtnR5yV8LVkrFyvGONKiA9kxkHKwoARO2TGmBQFF2A-kd2UfmVGKm1m5Pe8cd0tJho6OjZIfYP3IY1xS_uatu4ub1y3oUNEH4YwujH03SvbhNumwBafpkn3V1xLBxfv3sOeMY0YO3rdhRE39Ge2YzqkHCpVcAD4TD7Wrk24_6Z75Pr78dX8pFheLk7n35aFk0xXhVdQGjRYG0AH0gtRAwpXMr3ZeOexZkZ45bSudIWlAncjKqOldgyRAUixRw6m3CH2D4_5KJt_9Ni2rsP-MVmuuTKcmwweTqCPfUoRazvEcO_i1nJmXyu2_1ac8XLCn0OL2_-ydr2ar0CqKpuKyZRrxpd3U-7NaiOMsuuLhdU_quUZrLU9F38ACdmMPA</recordid><startdate>200306</startdate><enddate>200306</enddate><creator>Clow, David W.</creator><creator>Sickman, James O.</creator><creator>Striegl, Robert G.</creator><creator>Krabbenhoft, David P.</creator><creator>Elliott, John G.</creator><creator>Dornblaser, Mark</creator><creator>Roth, David A.</creator><creator>Campbell, Donald H.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200306</creationdate><title>Changes in the chemistry of lakes and precipitation in high-elevation national parks in the western United States, 1985-1999</title><author>Clow, David W. ; Sickman, James O. ; Striegl, Robert G. ; Krabbenhoft, David P. ; Elliott, John G. ; Dornblaser, Mark ; Roth, David A. ; Campbell, Donald H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4068-c5927e7ef79ea94c33f9e3a206ddcacef073c5a66868e259ab387646a0ee09943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>alpine</topic><topic>atmospheric deposition</topic><topic>emissions</topic><topic>Freshwater</topic><topic>lake chemistry</topic><topic>monitoring</topic><topic>talus</topic><topic>USA, western</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clow, David W.</creatorcontrib><creatorcontrib>Sickman, James O.</creatorcontrib><creatorcontrib>Striegl, Robert G.</creatorcontrib><creatorcontrib>Krabbenhoft, David P.</creatorcontrib><creatorcontrib>Elliott, John G.</creatorcontrib><creatorcontrib>Dornblaser, Mark</creatorcontrib><creatorcontrib>Roth, David A.</creatorcontrib><creatorcontrib>Campbell, Donald H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clow, David W.</au><au>Sickman, James O.</au><au>Striegl, Robert G.</au><au>Krabbenhoft, David P.</au><au>Elliott, John G.</au><au>Dornblaser, Mark</au><au>Roth, David A.</au><au>Campbell, Donald H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in the chemistry of lakes and precipitation in high-elevation national parks in the western United States, 1985-1999</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2003-06</date><risdate>2003</risdate><volume>39</volume><issue>6</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>High‐elevation lakes in the western United States are sensitive to atmospheric deposition of sulfur and nitrogen due to fast hydrologic flushing rates, short growing seasons, an abundance of exposed bedrock, and a lack of well‐developed soils. This sensitivity is reflected in the dilute chemistry of the lakes, which was documented in the U.S. Environmental Protection Agency's Western Lake Survey of 1985. Sixty‐nine lakes in seven national parks sampled during the 1985 survey were resampled during fall 1999 to investigate possible decadal‐scale changes in lake chemistry. In most lakes, SO4 concentrations were slightly lower in 1999 than in 1985, consistent with a regional decrease in precipitation SO4 concentrations and in SO2 emissions in the western United States. Nitrate concentrations also tended to be slightly lower in 1999 than in 1985, in contrast with generally stable or increasing inorganic N deposition in the west. Differences in alkalinity were variable among parks but were relatively consistent within each park. Possible effects of annual and seasonal‐scale variations in precipitation amount on lake chemistry were evaluated based on climate data available for the parks and an analysis of climatic effects at two research watersheds with long‐term records. Results suggest that rain prior to sampling in 1985 may have caused elevated NO3 in some lakes due to direct runoff of precipitation and flushing of NO3 from alpine soils, which may explain some of the decrease in NO3 concentrations observed in survey lakes.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2002WR001533</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2003-06, Vol.39 (6), p.n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_miscellaneous_16157117 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | alpine atmospheric deposition emissions Freshwater lake chemistry monitoring talus USA, western |
title | Changes in the chemistry of lakes and precipitation in high-elevation national parks in the western United States, 1985-1999 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20the%20chemistry%20of%20lakes%20and%20precipitation%20in%20high-elevation%20national%20parks%20in%20the%20western%20United%20States,%201985-1999&rft.jtitle=Water%20resources%20research&rft.au=Clow,%20David%20W.&rft.date=2003-06&rft.volume=39&rft.issue=6&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2002WR001533&rft_dat=%3Cproquest_cross%3E16157117%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4068-c5927e7ef79ea94c33f9e3a206ddcacef073c5a66868e259ab387646a0ee09943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16157117&rft_id=info:pmid/&rfr_iscdi=true |