Loading…
Runoff production processes in small alpine catchments within the unconsolidated Pleistocene sediments of the Lainbach area (Upper Bavaria)
In the Lainbach catchment, unconsolidated Pleistocene moraine sediments are widely distributed. Because of the great natural risk of floods, together with extreme loads of sediments, investigations of runoff production processes have been conducted in this area. At hillslope scale three test sites w...
Saved in:
Published in: | Hydrological processes 2003-08, Vol.17 (12), p.2463-2483 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the Lainbach catchment, unconsolidated Pleistocene moraine sediments are widely distributed. Because of the great natural risk of floods, together with extreme loads of sediments, investigations of runoff production processes have been conducted in this area. At hillslope scale three test sites with different states of soil development and vegetation cover were instrumented with V‐shaped weirs, precipitation gauges and measurement devices for electrical conductivity (EC) of discharge water. The EC has been used as a geochemical tracer for hydrograph separation, since the statistical relationship between content of dissolved Ca2+, Mg2+ cations and EC is highly significant for different stages of runoff. This method allows hydrograph separation at high temporal resolution for both the rising and falling limb of the hydrograph. The following results of the investigations can be resumed. If relief conditions are similar, the effectiveness of runoff production decreases with an increasing density of vegetation cover. The runoff delivery ratio decreases as well as the peaks of runoff. In contrast, concentration times of hillslope catchments are equal, even if vegetation cover is of great density and soils are well developed. As a reason for the short reaction times, different runoff production processes have been detected. On bare ground, infiltration excess overland flow intensified by surface sealing processes is the main source for quick runoff. On hillslopes well covered by vegetation, translatory flow processes indicated by soil water with high solute contents force a rapid runoff reaction only a few minutes after rainfall has begun. It is to be assumed that translatory flow is a runoff production process typical for hillslopes covered by vegetation in a steep alpine relief. By means of the areal distribution of the topographic index, concentration of runoff production on a small part of the catchment has been demonstrated for hillslopes densely covered by vegetation. The investigations have shown that there is a lack of studies on runoff production processes in steep alpine relief, as well as a deficit of methods to quantify hydraulic properties of coarse‐grained soils with a wide grain size distribution. Copyright © 2003 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0885-6087 1099-1085 |
DOI: | 10.1002/hyp.1254 |