Loading…

Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media

This study presents a relative permeability‐saturation (kr‐S) constitutive model that incorporates the critical phenomena necessary for simulating the rates of nonwetting fluid infiltration, redistribution, and immobilization in a saturated porous medium. To develop a model validation data set, the...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2003-08, Vol.39 (8), p.n/a
Main Authors: Gerhard, J. I., Kueper, B. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4065-8710f603ec872524d32cf4863bd64efe18d15cdf104bf277db912df371079f4e3
cites cdi_FETCH-LOGICAL-a4065-8710f603ec872524d32cf4863bd64efe18d15cdf104bf277db912df371079f4e3
container_end_page n/a
container_issue 8
container_start_page
container_title Water resources research
container_volume 39
creator Gerhard, J. I.
Kueper, B. H.
description This study presents a relative permeability‐saturation (kr‐S) constitutive model that incorporates the critical phenomena necessary for simulating the rates of nonwetting fluid infiltration, redistribution, and immobilization in a saturated porous medium. To develop a model validation data set, the migration of a dense, nonaqueous phase liquid (DNAPL) pool within a one‐dimensional, 1 m tall, saturated sandpack was monitored under alternating drainage and imbibition conditions. A light transmission/image analysis system, able to distinguish between connected‐phase and residual nonwetting phase (NWP) in the apparatus, measured the elevation of the top of the connected‐phase DNAPL pool as a function of time. Light transmission calibration curves, correlating fluid saturation to transmitted color at the macroscopic scale, were found to exhibit a functional dependence on saturation history that must be taken into account. Applying the calibration curves to captured images of the experiment provided a continuous sequence of fluid saturation profiles. Numerical simulations of the bench‐scale experiment, using model parameters measured independently at the macroscopic scale, predict within measurement uncertainty the observed timescales of DNAPL migration and immobilization. Additional simulations reveal that model validation for imbibition processes depends on properly accounting for NWP kr‐S hysteresis, including imbibition function curvature and the abrupt extinction of NWP relative permeability.
doi_str_mv 10.1029/2002WR001490
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16159891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16159891</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4065-8710f603ec872524d32cf4863bd64efe18d15cdf104bf277db912df371079f4e3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EEkvhxg_wiVND_ZU4PpaFbqlWpVoBe7Qcewxu87G1k7bLn-Av4yVVxYnTaEbPMxq9g9BbSt5TwtQJI4RtN4RQocgztKBKiEIqyZ-jBSGCF5Qr-RK9Sun6wJSVXKDfG2jNGO4A7yB2YJrQhnGP7U8TjR0hhjQGm3APFlIycY_9EHEK3XSw-h_44-Xp1RqH3od2jHk09Mc4gstaDM0096Z3OHTdcNj96y-TBZzMOGUDHN4NcZgS7rJmXqMX3rQJ3jzWI_Tt7NPX5Xmx_rL6vDxdF0aQqixqSYmvCAdbS1Yy4TizXtQVb1wlwAOtHS2t85SIxjMpXaMoc55nTSovgB-hd_PeXRxuJ0ij7kKy0Lamh3yMphUtVa1oBo9n0MYhpQhe72LochKaEn1IXf-besbZjN-HFvb_ZfV2s9zkF5VZKmYpxwYPT5KJN7qSXJZ6e7nSq-8XH9j2qtJn_A_TtpZ1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16159891</pqid></control><display><type>article</type><title>Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Gerhard, J. I. ; Kueper, B. H.</creator><creatorcontrib>Gerhard, J. I. ; Kueper, B. H.</creatorcontrib><description>This study presents a relative permeability‐saturation (kr‐S) constitutive model that incorporates the critical phenomena necessary for simulating the rates of nonwetting fluid infiltration, redistribution, and immobilization in a saturated porous medium. To develop a model validation data set, the migration of a dense, nonaqueous phase liquid (DNAPL) pool within a one‐dimensional, 1 m tall, saturated sandpack was monitored under alternating drainage and imbibition conditions. A light transmission/image analysis system, able to distinguish between connected‐phase and residual nonwetting phase (NWP) in the apparatus, measured the elevation of the top of the connected‐phase DNAPL pool as a function of time. Light transmission calibration curves, correlating fluid saturation to transmitted color at the macroscopic scale, were found to exhibit a functional dependence on saturation history that must be taken into account. Applying the calibration curves to captured images of the experiment provided a continuous sequence of fluid saturation profiles. Numerical simulations of the bench‐scale experiment, using model parameters measured independently at the macroscopic scale, predict within measurement uncertainty the observed timescales of DNAPL migration and immobilization. Additional simulations reveal that model validation for imbibition processes depends on properly accounting for NWP kr‐S hysteresis, including imbibition function curvature and the abrupt extinction of NWP relative permeability.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2002WR001490</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>constitutive relationships ; DNAPL ; multiphase flow ; relative permeability ; tortuosity</subject><ispartof>Water resources research, 2003-08, Vol.39 (8), p.n/a</ispartof><rights>Copyright 2003 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4065-8710f603ec872524d32cf4863bd64efe18d15cdf104bf277db912df371079f4e3</citedby><cites>FETCH-LOGICAL-a4065-8710f603ec872524d32cf4863bd64efe18d15cdf104bf277db912df371079f4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2002WR001490$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2002WR001490$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,11495,27905,27906,46449,46873</link.rule.ids></links><search><creatorcontrib>Gerhard, J. I.</creatorcontrib><creatorcontrib>Kueper, B. H.</creatorcontrib><title>Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>This study presents a relative permeability‐saturation (kr‐S) constitutive model that incorporates the critical phenomena necessary for simulating the rates of nonwetting fluid infiltration, redistribution, and immobilization in a saturated porous medium. To develop a model validation data set, the migration of a dense, nonaqueous phase liquid (DNAPL) pool within a one‐dimensional, 1 m tall, saturated sandpack was monitored under alternating drainage and imbibition conditions. A light transmission/image analysis system, able to distinguish between connected‐phase and residual nonwetting phase (NWP) in the apparatus, measured the elevation of the top of the connected‐phase DNAPL pool as a function of time. Light transmission calibration curves, correlating fluid saturation to transmitted color at the macroscopic scale, were found to exhibit a functional dependence on saturation history that must be taken into account. Applying the calibration curves to captured images of the experiment provided a continuous sequence of fluid saturation profiles. Numerical simulations of the bench‐scale experiment, using model parameters measured independently at the macroscopic scale, predict within measurement uncertainty the observed timescales of DNAPL migration and immobilization. Additional simulations reveal that model validation for imbibition processes depends on properly accounting for NWP kr‐S hysteresis, including imbibition function curvature and the abrupt extinction of NWP relative permeability.</description><subject>constitutive relationships</subject><subject>DNAPL</subject><subject>multiphase flow</subject><subject>relative permeability</subject><subject>tortuosity</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EEkvhxg_wiVND_ZU4PpaFbqlWpVoBe7Qcewxu87G1k7bLn-Av4yVVxYnTaEbPMxq9g9BbSt5TwtQJI4RtN4RQocgztKBKiEIqyZ-jBSGCF5Qr-RK9Sun6wJSVXKDfG2jNGO4A7yB2YJrQhnGP7U8TjR0hhjQGm3APFlIycY_9EHEK3XSw-h_44-Xp1RqH3od2jHk09Mc4gstaDM0096Z3OHTdcNj96y-TBZzMOGUDHN4NcZgS7rJmXqMX3rQJ3jzWI_Tt7NPX5Xmx_rL6vDxdF0aQqixqSYmvCAdbS1Yy4TizXtQVb1wlwAOtHS2t85SIxjMpXaMoc55nTSovgB-hd_PeXRxuJ0ij7kKy0Lamh3yMphUtVa1oBo9n0MYhpQhe72LochKaEn1IXf-besbZjN-HFvb_ZfV2s9zkF5VZKmYpxwYPT5KJN7qSXJZ6e7nSq-8XH9j2qtJn_A_TtpZ1</recordid><startdate>200308</startdate><enddate>200308</enddate><creator>Gerhard, J. I.</creator><creator>Kueper, B. H.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>200308</creationdate><title>Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media</title><author>Gerhard, J. I. ; Kueper, B. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4065-8710f603ec872524d32cf4863bd64efe18d15cdf104bf277db912df371079f4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>constitutive relationships</topic><topic>DNAPL</topic><topic>multiphase flow</topic><topic>relative permeability</topic><topic>tortuosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerhard, J. I.</creatorcontrib><creatorcontrib>Kueper, B. H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerhard, J. I.</au><au>Kueper, B. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2003-08</date><risdate>2003</risdate><volume>39</volume><issue>8</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>This study presents a relative permeability‐saturation (kr‐S) constitutive model that incorporates the critical phenomena necessary for simulating the rates of nonwetting fluid infiltration, redistribution, and immobilization in a saturated porous medium. To develop a model validation data set, the migration of a dense, nonaqueous phase liquid (DNAPL) pool within a one‐dimensional, 1 m tall, saturated sandpack was monitored under alternating drainage and imbibition conditions. A light transmission/image analysis system, able to distinguish between connected‐phase and residual nonwetting phase (NWP) in the apparatus, measured the elevation of the top of the connected‐phase DNAPL pool as a function of time. Light transmission calibration curves, correlating fluid saturation to transmitted color at the macroscopic scale, were found to exhibit a functional dependence on saturation history that must be taken into account. Applying the calibration curves to captured images of the experiment provided a continuous sequence of fluid saturation profiles. Numerical simulations of the bench‐scale experiment, using model parameters measured independently at the macroscopic scale, predict within measurement uncertainty the observed timescales of DNAPL migration and immobilization. Additional simulations reveal that model validation for imbibition processes depends on properly accounting for NWP kr‐S hysteresis, including imbibition function curvature and the abrupt extinction of NWP relative permeability.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2002WR001490</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2003-08, Vol.39 (8), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_16159891
source Wiley-Blackwell AGU Digital Library
subjects constitutive relationships
DNAPL
multiphase flow
relative permeability
tortuosity
title Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20permeability%20characteristics%20necessary%20for%20simulating%20DNAPL%20infiltration,%20redistribution,%20and%20immobilization%20in%20saturated%20porous%20media&rft.jtitle=Water%20resources%20research&rft.au=Gerhard,%20J.%20I.&rft.date=2003-08&rft.volume=39&rft.issue=8&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2002WR001490&rft_dat=%3Cproquest_cross%3E16159891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4065-8710f603ec872524d32cf4863bd64efe18d15cdf104bf277db912df371079f4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16159891&rft_id=info:pmid/&rfr_iscdi=true