Loading…

Assessing Long-Term pH Change in an Australian River Catchment Using Monitoring and Palaeolimnological Data

Reviews of stream monitoring data suggest that there has been significant acidification (>1.0 pH unit at some sites) of Victorian streamwaters over the past 3 decades. To assess whether these declines are within the range of natural variability, we developed a diatom model for inferring past pH a...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2003-08, Vol.37 (15), p.3250-3255
Main Authors: Tibby, John, Reid, Michael A, Fluin, Jennie, Hart, Barry T, Kershaw, A. Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a437t-523f490127cea7b0a5ede1706e1f691ba99c7849faf79f7aaf19d522999421b53
cites cdi_FETCH-LOGICAL-a437t-523f490127cea7b0a5ede1706e1f691ba99c7849faf79f7aaf19d522999421b53
container_end_page 3255
container_issue 15
container_start_page 3250
container_title Environmental science & technology
container_volume 37
creator Tibby, John
Reid, Michael A
Fluin, Jennie
Hart, Barry T
Kershaw, A. Peter
description Reviews of stream monitoring data suggest that there has been significant acidification (>1.0 pH unit at some sites) of Victorian streamwaters over the past 3 decades. To assess whether these declines are within the range of natural variability, we developed a diatom model for inferring past pH and applied it to a ca. 3500-yr diatom record from a flood plain lake, Callemondah 1 Billabong, on the Goulburn River, which has among the most substantial observed pH declines. The model has a jackkniffed r  2 between diatom inferred and measured pH of 0.77 and a root mean square error of prediction of 0.35 pH units. In the pre-European period, pH was stable (range 6.5−6.7) for approximately 3000 yr. Since European settlement around 160 yr ago, diatom-inferred billabong pH has increased significantly by >0.5 units. We hypothesize that this increase in pH is related to processes associated with land clearance (e.g., increased base cation load and decreased organic acid load). There is no evidence of the recent monitored declines in the Callemondah record, which may indicate that that flood plain lakes and the main stream are experiencing divergent pH trends or that the temporal resolution in the billabong sediment record is insufficient to register recent declines.
doi_str_mv 10.1021/es0263644
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16166720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>424041271</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-523f490127cea7b0a5ede1706e1f691ba99c7849faf79f7aaf19d522999421b53</originalsourceid><addsrcrecordid>eNpl0N9rUzEUB_AgiqvTB_8BCcIGPlzNj5ukeSx1dpOqxXUgvoTT26TLdm9Sk3tF__tltqyiEMiBfHI454vQS0reUsLoO5sJk1zW9SM0ooKRSowFfYxGhFBeaS6_HaFnOd8QQhgn46foiDItZTkjdDvJ2ebswwbPY9hUS5s6vD3H02sIG4t9wBDwZMh9gtaX8qv_aROeQt9cdzb0-OrP108x-D6m-xLCGi-gBRtb34XYxo1voMXvoYfn6ImDNtsX-_sYXX04W07Pq_mX2cV0Mq-g5qqvBOOu1oQy1VhQKwLCri1VRFrqpKYr0LpR41o7cEo7BeCoXgvGtNY1oyvBj9Hpru82xR-Dzb3pfG5s20KwcciGSiqlYqTA1__AmzikUGYzJSgq6jFnBb3ZoSbFnJN1Zpt8B-m3ocTcx28e4i_21b7hsOrs-iD3eRdwsgeQSywuQWh8PjhBak6IKq7aOZ97--vhHdKtkYorYZaLS7OY6c_fZx8vzV99ocmHJf4f8A5QTqac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230154832</pqid></control><display><type>article</type><title>Assessing Long-Term pH Change in an Australian River Catchment Using Monitoring and Palaeolimnological Data</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tibby, John ; Reid, Michael A ; Fluin, Jennie ; Hart, Barry T ; Kershaw, A. Peter</creator><creatorcontrib>Tibby, John ; Reid, Michael A ; Fluin, Jennie ; Hart, Barry T ; Kershaw, A. Peter</creatorcontrib><description>Reviews of stream monitoring data suggest that there has been significant acidification (&gt;1.0 pH unit at some sites) of Victorian streamwaters over the past 3 decades. To assess whether these declines are within the range of natural variability, we developed a diatom model for inferring past pH and applied it to a ca. 3500-yr diatom record from a flood plain lake, Callemondah 1 Billabong, on the Goulburn River, which has among the most substantial observed pH declines. The model has a jackkniffed r  2 between diatom inferred and measured pH of 0.77 and a root mean square error of prediction of 0.35 pH units. In the pre-European period, pH was stable (range 6.5−6.7) for approximately 3000 yr. Since European settlement around 160 yr ago, diatom-inferred billabong pH has increased significantly by &gt;0.5 units. We hypothesize that this increase in pH is related to processes associated with land clearance (e.g., increased base cation load and decreased organic acid load). There is no evidence of the recent monitored declines in the Callemondah record, which may indicate that that flood plain lakes and the main stream are experiencing divergent pH trends or that the temporal resolution in the billabong sediment record is insufficient to register recent declines.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es0263644</identifier><identifier>PMID: 12966966</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acid Rain ; Agriculture ; Bacillariophyceae ; Diatoms ; Earth sciences ; Earth, ocean, space ; Environmental monitoring ; Environmental Monitoring - methods ; Exact sciences and technology ; Freshwater ; Geochemistry ; Geologic Sediments - chemistry ; Hydrogen-Ion Concentration ; Hydrology ; Hydrology. Hydrogeology ; Marine and continental quaternary ; Mineralogy ; Models, Theoretical ; Plankton ; Population Dynamics ; Reference Values ; Rivers ; Silicates ; Surficial geology ; Water geochemistry ; Water pollution</subject><ispartof>Environmental science &amp; technology, 2003-08, Vol.37 (15), p.3250-3255</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-523f490127cea7b0a5ede1706e1f691ba99c7849faf79f7aaf19d522999421b53</citedby><cites>FETCH-LOGICAL-a437t-523f490127cea7b0a5ede1706e1f691ba99c7849faf79f7aaf19d522999421b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15043007$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12966966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tibby, John</creatorcontrib><creatorcontrib>Reid, Michael A</creatorcontrib><creatorcontrib>Fluin, Jennie</creatorcontrib><creatorcontrib>Hart, Barry T</creatorcontrib><creatorcontrib>Kershaw, A. Peter</creatorcontrib><title>Assessing Long-Term pH Change in an Australian River Catchment Using Monitoring and Palaeolimnological Data</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Reviews of stream monitoring data suggest that there has been significant acidification (&gt;1.0 pH unit at some sites) of Victorian streamwaters over the past 3 decades. To assess whether these declines are within the range of natural variability, we developed a diatom model for inferring past pH and applied it to a ca. 3500-yr diatom record from a flood plain lake, Callemondah 1 Billabong, on the Goulburn River, which has among the most substantial observed pH declines. The model has a jackkniffed r  2 between diatom inferred and measured pH of 0.77 and a root mean square error of prediction of 0.35 pH units. In the pre-European period, pH was stable (range 6.5−6.7) for approximately 3000 yr. Since European settlement around 160 yr ago, diatom-inferred billabong pH has increased significantly by &gt;0.5 units. We hypothesize that this increase in pH is related to processes associated with land clearance (e.g., increased base cation load and decreased organic acid load). There is no evidence of the recent monitored declines in the Callemondah record, which may indicate that that flood plain lakes and the main stream are experiencing divergent pH trends or that the temporal resolution in the billabong sediment record is insufficient to register recent declines.</description><subject>Acid Rain</subject><subject>Agriculture</subject><subject>Bacillariophyceae</subject><subject>Diatoms</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental monitoring</subject><subject>Environmental Monitoring - methods</subject><subject>Exact sciences and technology</subject><subject>Freshwater</subject><subject>Geochemistry</subject><subject>Geologic Sediments - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Marine and continental quaternary</subject><subject>Mineralogy</subject><subject>Models, Theoretical</subject><subject>Plankton</subject><subject>Population Dynamics</subject><subject>Reference Values</subject><subject>Rivers</subject><subject>Silicates</subject><subject>Surficial geology</subject><subject>Water geochemistry</subject><subject>Water pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpl0N9rUzEUB_AgiqvTB_8BCcIGPlzNj5ukeSx1dpOqxXUgvoTT26TLdm9Sk3tF__tltqyiEMiBfHI454vQS0reUsLoO5sJk1zW9SM0ooKRSowFfYxGhFBeaS6_HaFnOd8QQhgn46foiDItZTkjdDvJ2ebswwbPY9hUS5s6vD3H02sIG4t9wBDwZMh9gtaX8qv_aROeQt9cdzb0-OrP108x-D6m-xLCGi-gBRtb34XYxo1voMXvoYfn6ImDNtsX-_sYXX04W07Pq_mX2cV0Mq-g5qqvBOOu1oQy1VhQKwLCri1VRFrqpKYr0LpR41o7cEo7BeCoXgvGtNY1oyvBj9Hpru82xR-Dzb3pfG5s20KwcciGSiqlYqTA1__AmzikUGYzJSgq6jFnBb3ZoSbFnJN1Zpt8B-m3ocTcx28e4i_21b7hsOrs-iD3eRdwsgeQSywuQWh8PjhBak6IKq7aOZ97--vhHdKtkYorYZaLS7OY6c_fZx8vzV99ocmHJf4f8A5QTqac</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Tibby, John</creator><creator>Reid, Michael A</creator><creator>Fluin, Jennie</creator><creator>Hart, Barry T</creator><creator>Kershaw, A. Peter</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>20030801</creationdate><title>Assessing Long-Term pH Change in an Australian River Catchment Using Monitoring and Palaeolimnological Data</title><author>Tibby, John ; Reid, Michael A ; Fluin, Jennie ; Hart, Barry T ; Kershaw, A. Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-523f490127cea7b0a5ede1706e1f691ba99c7849faf79f7aaf19d522999421b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acid Rain</topic><topic>Agriculture</topic><topic>Bacillariophyceae</topic><topic>Diatoms</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental monitoring</topic><topic>Environmental Monitoring - methods</topic><topic>Exact sciences and technology</topic><topic>Freshwater</topic><topic>Geochemistry</topic><topic>Geologic Sediments - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Marine and continental quaternary</topic><topic>Mineralogy</topic><topic>Models, Theoretical</topic><topic>Plankton</topic><topic>Population Dynamics</topic><topic>Reference Values</topic><topic>Rivers</topic><topic>Silicates</topic><topic>Surficial geology</topic><topic>Water geochemistry</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tibby, John</creatorcontrib><creatorcontrib>Reid, Michael A</creatorcontrib><creatorcontrib>Fluin, Jennie</creatorcontrib><creatorcontrib>Hart, Barry T</creatorcontrib><creatorcontrib>Kershaw, A. Peter</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tibby, John</au><au>Reid, Michael A</au><au>Fluin, Jennie</au><au>Hart, Barry T</au><au>Kershaw, A. Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Long-Term pH Change in an Australian River Catchment Using Monitoring and Palaeolimnological Data</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>37</volume><issue>15</issue><spage>3250</spage><epage>3255</epage><pages>3250-3255</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Reviews of stream monitoring data suggest that there has been significant acidification (&gt;1.0 pH unit at some sites) of Victorian streamwaters over the past 3 decades. To assess whether these declines are within the range of natural variability, we developed a diatom model for inferring past pH and applied it to a ca. 3500-yr diatom record from a flood plain lake, Callemondah 1 Billabong, on the Goulburn River, which has among the most substantial observed pH declines. The model has a jackkniffed r  2 between diatom inferred and measured pH of 0.77 and a root mean square error of prediction of 0.35 pH units. In the pre-European period, pH was stable (range 6.5−6.7) for approximately 3000 yr. Since European settlement around 160 yr ago, diatom-inferred billabong pH has increased significantly by &gt;0.5 units. We hypothesize that this increase in pH is related to processes associated with land clearance (e.g., increased base cation load and decreased organic acid load). There is no evidence of the recent monitored declines in the Callemondah record, which may indicate that that flood plain lakes and the main stream are experiencing divergent pH trends or that the temporal resolution in the billabong sediment record is insufficient to register recent declines.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12966966</pmid><doi>10.1021/es0263644</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2003-08, Vol.37 (15), p.3250-3255
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_16166720
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Acid Rain
Agriculture
Bacillariophyceae
Diatoms
Earth sciences
Earth, ocean, space
Environmental monitoring
Environmental Monitoring - methods
Exact sciences and technology
Freshwater
Geochemistry
Geologic Sediments - chemistry
Hydrogen-Ion Concentration
Hydrology
Hydrology. Hydrogeology
Marine and continental quaternary
Mineralogy
Models, Theoretical
Plankton
Population Dynamics
Reference Values
Rivers
Silicates
Surficial geology
Water geochemistry
Water pollution
title Assessing Long-Term pH Change in an Australian River Catchment Using Monitoring and Palaeolimnological Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Long-Term%20pH%20Change%20in%20an%20Australian%20River%20Catchment%20Using%20Monitoring%20and%20Palaeolimnological%20Data&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Tibby,%20John&rft.date=2003-08-01&rft.volume=37&rft.issue=15&rft.spage=3250&rft.epage=3255&rft.pages=3250-3255&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es0263644&rft_dat=%3Cproquest_cross%3E424041271%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a437t-523f490127cea7b0a5ede1706e1f691ba99c7849faf79f7aaf19d522999421b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230154832&rft_id=info:pmid/12966966&rfr_iscdi=true