Loading…
Residual toxicity of soil-applied chlorothalonil on mycorrhizal symbiosis in Leucaena leucocephala
The residual effect of the fungicide chlorothalonil on the vesicular-arbuscular mycorrhizal (VAM) symbiosis was evaluated in a greenhouse experiment. The soil used was an oxisol (Tropeptic Eutrustox) treated with P to obtain target levels near-optimal for VAM activity or sufficient for nonmycorrhiza...
Saved in:
Published in: | Plant and soil 1992-02, Vol.140 (2), p.263-268 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The residual effect of the fungicide chlorothalonil on the vesicular-arbuscular mycorrhizal (VAM) symbiosis was evaluated in a greenhouse experiment. The soil used was an oxisol (Tropeptic Eutrustox) treated with P to obtain target levels near-optimal for VAM activity or sufficient for nonmycorrhizal host growth. In the uninoculated soil treated with the former P level, the fungicide reduced VAM colonization of roots and completely suppressed symbiotic effectiveness measured in terms of pinnule P content. When this soil was inoculated with Glomus aggregatum, symbiotic effectiveness was significantly reduced but not eliminated by 50 mg of the fungicide kg⁻¹. At higher chlorothalonil levels, VAM effectiveness but not VAM colonization was completely suppressed in the inoculated soil. The pattern with which chlorothalonil influenced tissue P content and dry matter yield at the time of harvest closely paralleled its effect on VAM effectiveness. In the soil treated with P level sufficient for nonmycorrhizal host growth, the adverse effect of the fungicide on the above variables was appreciably milder than when the host relied on VAM fungi for its P supply. The toxic effect of the fungicide, therefore, was partly offset by P fertilization, suggesting that VAM fungi were more sensitive to chlorothalonil than the host. Our results demonstrate that although the toxic effect of chlorothalonil declined as a function of time, a significant level of toxicity persisted 12.5 weeks after the chemical was applied to soil. |
---|---|
ISSN: | 0032-079X 1573-5036 |
DOI: | 10.1007/BF00010603 |