Loading…
Primate-inspired adaptive routing in intermittently connected mobile communication systems
An intermittently connected mobile ad hoc network is a special type of wireless mobile network without fully connected path between the source and destination most of the time. In some related works on mobility models, the missing realism of mobility model has been discussed. However, very few routi...
Saved in:
Published in: | Wireless networks 2014-10, Vol.20 (7), p.1939-1954 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An intermittently connected mobile ad hoc network is a special type of wireless mobile network without fully connected path between the source and destination most of the time. In some related works on mobility models, the missing realism of mobility model has been discussed. However, very few routing protocols based on realistic mobility models have been proposed so far. In this paper, we present a primate-inspired mobility model for intermittently connected mobile networks. Such a mobility model can represent and reflect the mobile features of humans. Traditional routing schemes in intermittently connected mobile networks fail to integrate the mobility model with routing strategy to fully utilize the mobility features. To overcome such a drawback, we propose a new routing scheme called primate-inspired adaptive routing protocol (PARP), which can utilize the features of the primate mobility to assist routing. Furthermore, our proposed protocol can determine the number of message copies and the routing strategy based on the walking length of the mobility model. The predictions of the walking lengths are implemented by a particle filter based algorithm. Our results demonstrate that PARP can achieve a better performance than a few typical routing protocols for intermittently connected mobile ad hoc networks. |
---|---|
ISSN: | 1022-0038 1572-8196 |
DOI: | 10.1007/s11276-014-0719-9 |