Loading…
Superhydrophobic Surface by Replication of Laser Micromachined Pattern in Epoxy/Alumina Nanoparticle Composite
Superhydrophobic surfaces were obtained by superposition of microstructure—defined by replication of laser micromachined masters, with nanostructure—created by durable epoxy/γ-Al2O3 nanoparticle composite, used for replication. Hierarchical surface topography thus obtained consisted of hexagonally s...
Saved in:
Published in: | Journal of nanomaterials 2014-01, Vol.2014 (2014), p.1-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Superhydrophobic surfaces were obtained by superposition of microstructure—defined by replication of laser micromachined masters, with nanostructure—created by durable epoxy/γ-Al2O3 nanoparticle composite, used for replication. Hierarchical surface topography thus obtained consisted of hexagonally spaced microcavities and nanoparticle agglomerates, exposed on the replica surface by radio frequency (RF) air plasma etching. Surface topography was further enhanced by rims around the microcavity edges, resulting from nanosecond laser micromachining defects in aluminum masters. Subsequent wet chemical hydrophobization with 1H,1H,2H,2H-perfluorotetradecyltriethoxysilane (PFTDTES) provided superhydrophobic behavior in replicas with a microcavity spacing of 30 μm, as indicated by a water contact angle of 160° and a sliding angle of 8°. The preparation method is relatively simple, inexpensive, and potentially scalable. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2014/547895 |