Loading…

Regenerative Braking System of Electric Vehicle Driven by Brushless DC Motor

Regenerative braking can improve energy usage efficiency and can prolong the driving distance of electric vehicles (EVs). A creative regenerative braking system (RBS) is presented in this paper. The RBS is adapted to brushless dc (BLDC) motor, and it emphasizes on the distribution of the braking for...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2014-10, Vol.61 (10), p.5798-5808
Main Authors: Nian, Xiaohong, Peng, Fei, Zhang, Hang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Regenerative braking can improve energy usage efficiency and can prolong the driving distance of electric vehicles (EVs). A creative regenerative braking system (RBS) is presented in this paper. The RBS is adapted to brushless dc (BLDC) motor, and it emphasizes on the distribution of the braking force, as well as BLDC motor control. In this paper, BLDC motor control utilizes the traditional proportional-integral-derivative (PID) control, and the distribution of braking force adopts fuzzy logic control. Because the fuzzy reasoning is slower than PID control, the braking torque can be real-time controlled by PID control. In comparison to other solutions, the new solution has better performance in regard to realization, robustness, and efficiency. Then, this paper presents the simulation results by analyzing the battery state of charge, braking force, and dc bus current under the environment of MATLAB and Simulink. The simulation results show that the fuzzy logic and PID control can realize the regenerative braking and can prolong the driving distance of EVs under the condition of ensuring braking quality. At last, it is verified that the proposed method is realizable for practical implementation.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2014.2300059