Loading…

AutoRELAX: automatically RELAXing a goal model to address uncertainty

Dynamically adaptive systems (DAS) must cope with system and environmental conditions that may not have been fully understood or anticipated during development. RELAX is a fuzzy logic-based specification language for identifying and assessing sources of environmental uncertainty, thereby making DAS...

Full description

Saved in:
Bibliographic Details
Published in:Empirical software engineering : an international journal 2014-10, Vol.19 (5), p.1466-1501
Main Authors: Fredericks, Erik M., DeVries, Byron, Cheng, Betty H. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dynamically adaptive systems (DAS) must cope with system and environmental conditions that may not have been fully understood or anticipated during development. RELAX is a fuzzy logic-based specification language for identifying and assessing sources of environmental uncertainty, thereby making DAS requirements more tolerant of unanticipated conditions. This paper presents AutoRELAX, an approach that automatically generates RELAXed goal models to address environmental uncertainty. Specifically, AutoRELAX identifies goals to RELAX, which RELAX operators to apply, and the shape of the fuzzy logic function that establishes the goal satisfaction criteria. AutoRELAX generates different solutions by making tradeoffs between minimizing the number of RELAXed goals and maximizing delivered functionality by reducing the number of adaptations triggered by minor and adverse environmental conditions. In a recent extension, AutoRELAX uses a stepwise adaptation of weights to balance these two competing concerns and thereby further improve the utility of AutoRELAX. We apply it to two industry-based applications involving network management and a robotic controller, respectively.
ISSN:1382-3256
1573-7616
DOI:10.1007/s10664-014-9305-0