Loading…

Least Squares Superposition Codes With Bernoulli Dictionary are Still Reliable at Rates up to Capacity

For the additive white Gaussian noise channel with average power constraint, sparse superposition codes with least squares decoding are proposed by Barron and Joseph in 2010. The codewords are designed by using a dictionary each entry of which is drawn from a Gaussian distribution. The error probabi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2014-05, Vol.60 (5), p.2737-2750
Main Authors: Takeishi, Yoshinari, Kawakita, Masanori, Takeuchi, Jun'ichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-46cce660566fdcb875a4c9cf43a581525473660a654dfce9e4cac0c4a648c3ae3
cites cdi_FETCH-LOGICAL-c354t-46cce660566fdcb875a4c9cf43a581525473660a654dfce9e4cac0c4a648c3ae3
container_end_page 2750
container_issue 5
container_start_page 2737
container_title IEEE transactions on information theory
container_volume 60
creator Takeishi, Yoshinari
Kawakita, Masanori
Takeuchi, Jun'ichi
description For the additive white Gaussian noise channel with average power constraint, sparse superposition codes with least squares decoding are proposed by Barron and Joseph in 2010. The codewords are designed by using a dictionary each entry of which is drawn from a Gaussian distribution. The error probability is shown to be exponentially small for all rates up to the capacity. This paper proves that when each entry of the dictionary is drawn from a Bernoulli distribution, the error probability is also exponentially small for all rates up to the capacity. The proof is via a central limit theorem-type inequality, which we show for this analysis.
doi_str_mv 10.1109/TIT.2014.2312728
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620103307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6776455</ieee_id><sourcerecordid>3291694591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-46cce660566fdcb875a4c9cf43a581525473660a654dfce9e4cac0c4a648c3ae3</originalsourceid><addsrcrecordid>eNpdkEFrGzEQhUVpIW7ae6AXQSn0sq60Gml3j62btAFDIXbpUUzkWaqgrDaS9pB_XxmbHHoaNO97M5rH2JUUaynF8GV_u1-3QsK6VbLt2v4VW0mtu2YwGl6zlRCybwaA_oK9zfmhPkHLdsXGLWEufPe0YKLMd8tMaY7ZFx8nvomH2vvjy1_-jdIUlxA8_-7dUcT0zKuF74oPgd9R8HgfiGPhd1iqa5l5iXyDMzpfnt-xNyOGTO_P9ZL9vrneb342218_bjdft41TGkoDxjkyRmhjxoO77zuN4AY3gkLdS91q6FSVsd50GB0NBA6dcIAGeqeQ1CX7fJo7p_i0UC720WdHIeBEcclWmpqRUEp0Ff34H_oQlzTV39m6SUArRC8rJU6USzHnRKOdk3-sx1sp7DF4W4O3x-DtOfhq-XQejNlhGBNOzucXX9vDYAQMlftw4jwRvcim6wxorf4B37OLeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520420081</pqid></control><display><type>article</type><title>Least Squares Superposition Codes With Bernoulli Dictionary are Still Reliable at Rates up to Capacity</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Takeishi, Yoshinari ; Kawakita, Masanori ; Takeuchi, Jun'ichi</creator><creatorcontrib>Takeishi, Yoshinari ; Kawakita, Masanori ; Takeuchi, Jun'ichi</creatorcontrib><description>For the additive white Gaussian noise channel with average power constraint, sparse superposition codes with least squares decoding are proposed by Barron and Joseph in 2010. The codewords are designed by using a dictionary each entry of which is drawn from a Gaussian distribution. The error probability is shown to be exponentially small for all rates up to the capacity. This paper proves that when each entry of the dictionary is drawn from a Bernoulli distribution, the error probability is also exponentially small for all rates up to the capacity. The proof is via a central limit theorem-type inequality, which we show for this analysis.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2014.2312728</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; AWGN channels ; Channels ; Codes ; Coding, codes ; Decoding ; Dictionaries ; Error probability ; Errors ; Exact sciences and technology ; Gaussian ; Gaussian distribution ; Inequalities ; Information theory ; Information, signal and communications theory ; Least squares method ; Noise ; Normal distribution ; Random variables ; Signal and communications theory ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on information theory, 2014-05, Vol.60 (5), p.2737-2750</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-46cce660566fdcb875a4c9cf43a581525473660a654dfce9e4cac0c4a648c3ae3</citedby><cites>FETCH-LOGICAL-c354t-46cce660566fdcb875a4c9cf43a581525473660a654dfce9e4cac0c4a648c3ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6776455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28496049$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Takeishi, Yoshinari</creatorcontrib><creatorcontrib>Kawakita, Masanori</creatorcontrib><creatorcontrib>Takeuchi, Jun'ichi</creatorcontrib><title>Least Squares Superposition Codes With Bernoulli Dictionary are Still Reliable at Rates up to Capacity</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>For the additive white Gaussian noise channel with average power constraint, sparse superposition codes with least squares decoding are proposed by Barron and Joseph in 2010. The codewords are designed by using a dictionary each entry of which is drawn from a Gaussian distribution. The error probability is shown to be exponentially small for all rates up to the capacity. This paper proves that when each entry of the dictionary is drawn from a Bernoulli distribution, the error probability is also exponentially small for all rates up to the capacity. The proof is via a central limit theorem-type inequality, which we show for this analysis.</description><subject>Applied sciences</subject><subject>AWGN channels</subject><subject>Channels</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Decoding</subject><subject>Dictionaries</subject><subject>Error probability</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Gaussian</subject><subject>Gaussian distribution</subject><subject>Inequalities</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Least squares method</subject><subject>Noise</subject><subject>Normal distribution</subject><subject>Random variables</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkEFrGzEQhUVpIW7ae6AXQSn0sq60Gml3j62btAFDIXbpUUzkWaqgrDaS9pB_XxmbHHoaNO97M5rH2JUUaynF8GV_u1-3QsK6VbLt2v4VW0mtu2YwGl6zlRCybwaA_oK9zfmhPkHLdsXGLWEufPe0YKLMd8tMaY7ZFx8nvomH2vvjy1_-jdIUlxA8_-7dUcT0zKuF74oPgd9R8HgfiGPhd1iqa5l5iXyDMzpfnt-xNyOGTO_P9ZL9vrneb342218_bjdft41TGkoDxjkyRmhjxoO77zuN4AY3gkLdS91q6FSVsd50GB0NBA6dcIAGeqeQ1CX7fJo7p_i0UC720WdHIeBEcclWmpqRUEp0Ff34H_oQlzTV39m6SUArRC8rJU6USzHnRKOdk3-sx1sp7DF4W4O3x-DtOfhq-XQejNlhGBNOzucXX9vDYAQMlftw4jwRvcim6wxorf4B37OLeQ</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Takeishi, Yoshinari</creator><creator>Kawakita, Masanori</creator><creator>Takeuchi, Jun'ichi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140501</creationdate><title>Least Squares Superposition Codes With Bernoulli Dictionary are Still Reliable at Rates up to Capacity</title><author>Takeishi, Yoshinari ; Kawakita, Masanori ; Takeuchi, Jun'ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-46cce660566fdcb875a4c9cf43a581525473660a654dfce9e4cac0c4a648c3ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>AWGN channels</topic><topic>Channels</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Decoding</topic><topic>Dictionaries</topic><topic>Error probability</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Gaussian</topic><topic>Gaussian distribution</topic><topic>Inequalities</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Least squares method</topic><topic>Noise</topic><topic>Normal distribution</topic><topic>Random variables</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeishi, Yoshinari</creatorcontrib><creatorcontrib>Kawakita, Masanori</creatorcontrib><creatorcontrib>Takeuchi, Jun'ichi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeishi, Yoshinari</au><au>Kawakita, Masanori</au><au>Takeuchi, Jun'ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least Squares Superposition Codes With Bernoulli Dictionary are Still Reliable at Rates up to Capacity</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>60</volume><issue>5</issue><spage>2737</spage><epage>2750</epage><pages>2737-2750</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>For the additive white Gaussian noise channel with average power constraint, sparse superposition codes with least squares decoding are proposed by Barron and Joseph in 2010. The codewords are designed by using a dictionary each entry of which is drawn from a Gaussian distribution. The error probability is shown to be exponentially small for all rates up to the capacity. This paper proves that when each entry of the dictionary is drawn from a Bernoulli distribution, the error probability is also exponentially small for all rates up to the capacity. The proof is via a central limit theorem-type inequality, which we show for this analysis.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2014.2312728</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2014-05, Vol.60 (5), p.2737-2750
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_1620103307
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
AWGN channels
Channels
Codes
Coding, codes
Decoding
Dictionaries
Error probability
Errors
Exact sciences and technology
Gaussian
Gaussian distribution
Inequalities
Information theory
Information, signal and communications theory
Least squares method
Noise
Normal distribution
Random variables
Signal and communications theory
Telecommunications and information theory
Vectors
title Least Squares Superposition Codes With Bernoulli Dictionary are Still Reliable at Rates up to Capacity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least%20Squares%20Superposition%20Codes%20With%20Bernoulli%20Dictionary%20are%20Still%20Reliable%20at%20Rates%20up%20to%20Capacity&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Takeishi,%20Yoshinari&rft.date=2014-05-01&rft.volume=60&rft.issue=5&rft.spage=2737&rft.epage=2750&rft.pages=2737-2750&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2014.2312728&rft_dat=%3Cproquest_ieee_%3E3291694591%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-46cce660566fdcb875a4c9cf43a581525473660a654dfce9e4cac0c4a648c3ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1520420081&rft_id=info:pmid/&rft_ieee_id=6776455&rfr_iscdi=true