Loading…
Novel chemical route for atomic layer deposition of MoS₂ thin film on SiO₂/Si substrate
Recently MoS₂ with a two-dimensional layered structure has attracted great attention as an emerging material for electronics and catalysis applications. Although atomic layer deposition (ALD) is well-known as a special modification of chemical vapor deposition in order to grow a thin film in a manne...
Saved in:
Published in: | Nanoscale 2014-11, Vol.6 (23), p.14453-14458 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently MoS₂ with a two-dimensional layered structure has attracted great attention as an emerging material for electronics and catalysis applications. Although atomic layer deposition (ALD) is well-known as a special modification of chemical vapor deposition in order to grow a thin film in a manner of layer-by-layer, there is little literature on ALD of MoS₂ due to a lack of suitable chemistry. Here we report MoS₂ growth by ALD using molybdenum hexacarbonyl and dimethyldisulfide as Mo and S precursors, respectively. MoS₂ can be directly grown on a SiO₂/Si substrate at 100 °C via the novel chemical route. Although the as-grown films are shown to be amorphous in X-ray diffraction analysis, they clearly show characteristic Raman modes (E(1)₂g and A₁g) of 2H-MoS₂ with a trigonal prismatic arrangement of S-Mo-S units. After annealing at 900 °C for 5 min under Ar atmosphere, the film is crystallized for MoS₂ layers to be aligned with its basal plane parallel to the substrate. |
---|---|
ISSN: | 2040-3372 |
DOI: | 10.1039/c4nr04816d |