Loading…

Quantitative Proteomic Approach to Understand Metabolic Adaptation in Non-Small Cell Lung Cancer

KRAS mutations in non-small cell lung cancer (NSCLC) are a predictor of resistance to EGFR-targeted therapies. Because approaches to target RAS signaling have been unsuccessful, targeting lung cancer metabolism might help to develop a new strategy that could overcome drug resistance in such cancer....

Full description

Saved in:
Bibliographic Details
Published in:Journal of proteome research 2014-11, Vol.13 (11), p.4695-4704
Main Authors: Martín-Bernabé, Alfonso, Cortés, Roldán, Lehmann, Sylvia G, Seve, Michel, Cascante, Marta, Bourgoin-Voillard, Sandrine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:KRAS mutations in non-small cell lung cancer (NSCLC) are a predictor of resistance to EGFR-targeted therapies. Because approaches to target RAS signaling have been unsuccessful, targeting lung cancer metabolism might help to develop a new strategy that could overcome drug resistance in such cancer. In this study, we applied a large screening quantitative proteomic analysis to evidence key enzymes involved in metabolic adaptations in lung cancer. We carried out the proteomic analysis of two KRAS-mutated NSCLC cell lines (A549 and NCI-H460) and a non tumoral bronchial cell line (BEAS-2B) using an iTRAQ (isobaric tags for relative and absolute quantitation) approach combined with two-dimensional fractionation (OFFGEL/RP nanoLC) and MALDI–TOF/TOF mass spectrometry analysis. Protein targets identified by our iTRAQ approach were validated by Western blotting analysis. Among 1038 proteins identified and 834 proteins quantified, 49 and 82 proteins were respectively found differently expressed in A549 and NCI-H460 cells compared to the BEAS-2B non tumoral cell line. Regarding the metabolic pathways, enzymes involved in glycolysis (GAPDH/PKM2/LDH-A/LDH-B) and pentose phosphate pathway (PPP) (G6PD/TKT/6PGD) were up-regulated. The up-regulation of enzyme expression in PPP is correlated to their enzyme activity and will be further investigated to confirm those enzymes as promising metabolic targets for the development of new therapeutic treatments or biomarker assay for NSCLC.
ISSN:1535-3893
1535-3907
DOI:10.1021/pr500327v