Loading…

Neurophysiological assessment of the injured spinal cord: an intraoperative approach

Study design: Prospective, observational study. Objectives: To assess the spinal cord function intraoperatively in subjects during spine stabilization for spinal cord trauma, by recording muscular (m-MEPs) and epidural motor evoked potentials (e-MEPs, D wave) along with cortical and epidural somatos...

Full description

Saved in:
Bibliographic Details
Published in:Spinal cord 2014-10, Vol.52 (10), p.749-757
Main Authors: Costa, P, Faccani, G, Sala, F, Montalenti, E, Giobbe, M L, Deletis, V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Study design: Prospective, observational study. Objectives: To assess the spinal cord function intraoperatively in subjects during spine stabilization for spinal cord trauma, by recording muscular (m-MEPs) and epidural motor evoked potentials (e-MEPs, D wave) along with cortical and epidural somatosensory evoked potentials (e-SEPs) and predicting the outcome of spinal cord injury (SCI). Setting: Regional Trauma Center, Torino, Italy. Methods: Fifty-five patients were intraoperatively studied during posterior spine stabilization surgery for traumatic SCI. In all, 21 of these had complete SCI, 14 an incomplete SCI—6 of them with central cord syndrome and 1 with central cord plus Brown Sequard syndrome—and 20 patients were neurologically uncompromised. Results: The neurophysiologic profile of the complete SCI was the absence of both m-MEPs and e-MEPs caudally to the lesion site, associated with a lack of cortical and e-SEPs cranially to the lesion site. None of these patients recovered motor function in the follow-up. A clearly detectable caudal D wave was associated with motor recovery even in deeply paraparetic patients. In one neurologically incomplete patient a reversible deterioration of m-MEPs and e-MEPs was observed during the compression-distraction manoeuvre. Conclusion: Intraoperative neurophysiological evaluation of SCI patients can provide information about spinal cord function that is not retrievable by other clinical means and can correctly predict neurological outcome. Intraoperative testing during early stabilization of the spine of deeply paraparetic SCI patients provides additional information about their neurological profile.
ISSN:1362-4393
1476-5624
DOI:10.1038/sc.2014.138