Loading…
Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes
Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lo...
Saved in:
Published in: | Environmental science & technology 2014-10, Vol.48 (19), p.11445-11452 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93 |
---|---|
cites | cdi_FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93 |
container_end_page | 11452 |
container_issue | 19 |
container_start_page | 11445 |
container_title | Environmental science & technology |
container_volume | 48 |
creator | Li, Jun Kawashima, Nobuyuki Fan, Rong Schumann, Russell C Gerson, Andrea R Smart, Roger St.C |
description | Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method. |
doi_str_mv | 10.1021/es502482m |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1622605574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3467639601</sourcerecordid><originalsourceid>FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93</originalsourceid><addsrcrecordid>eNpl0M9LHDEUB_AgFXe1HvwHSqAU6mHse5lkJjnKVq3g4sEWvQ0x84ZGdiaaZAv733fUdRU95RE-vB9fxg4QjhAE_qCkQEgt-i02RSWgUFrhJzYFwLIwZXUzYbsp3QGAKEHvsIlQWGtTmymbzyn_DS3vQuQ_fcp-cNn_I34ylr3NPgw8dPwqh0gtP3a-9XnFT0PsE_fD0wef-4H4tU2Z0me23dlFov31u8f-nJ78nv0qLi7PzmfHF4WVssyFMqZVSpJVBqWyNRpZSeEsVQhApW1bhNKhQInYkhS6rIQlVLLToByZco99f-57H8PDklJuep8cLRZ2oLBMDVZCVKBULUf69R29C8s4jNuNCqWualXpUR0-KxdDSpG65j6O98dVg9A8ZtxsMh7tl3XH5W1P7Ua-hDqCb2tgk7OLLtrB-fTqtEGjQb4669KbrT4M_A8WfIyv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614867568</pqid></control><display><type>article</type><title>Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Jun ; Kawashima, Nobuyuki ; Fan, Rong ; Schumann, Russell C ; Gerson, Andrea R ; Smart, Roger St.C</creator><creatorcontrib>Li, Jun ; Kawashima, Nobuyuki ; Fan, Rong ; Schumann, Russell C ; Gerson, Andrea R ; Smart, Roger St.C</creatorcontrib><description>Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es502482m</identifier><identifier>PMID: 25178979</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acid mine drainage ; Acidity ; Acids ; Acids - analysis ; Applied sciences ; Biological and physicochemical phenomena ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environmental Monitoring - methods ; Exact sciences and technology ; Ferric Compounds - chemistry ; Hydrolysis ; Iron - chemistry ; Iron Compounds - isolation & purification ; Leaching ; Metallurgy ; Mineralogy ; Minerals ; Minerals - analysis ; Mining ; Natural water pollution ; Other industrial wastes. Sewage sludge ; Oxalates - chemistry ; Oxidation ; Pollution ; Pollution, environment geology ; Protons ; Sulfates - analysis ; Sulfates - chemistry ; Sulfides - analysis ; Sulfides - chemistry ; Waste Products - analysis ; Wastes ; Water ; Water treatment and pollution</subject><ispartof>Environmental science & technology, 2014-10, Vol.48 (19), p.11445-11452</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 7, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93</citedby><cites>FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28919804$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25178979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Kawashima, Nobuyuki</creatorcontrib><creatorcontrib>Fan, Rong</creatorcontrib><creatorcontrib>Schumann, Russell C</creatorcontrib><creatorcontrib>Gerson, Andrea R</creatorcontrib><creatorcontrib>Smart, Roger St.C</creatorcontrib><title>Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.</description><subject>Acid mine drainage</subject><subject>Acidity</subject><subject>Acids</subject><subject>Acids - analysis</subject><subject>Applied sciences</subject><subject>Biological and physicochemical phenomena</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental Monitoring - methods</subject><subject>Exact sciences and technology</subject><subject>Ferric Compounds - chemistry</subject><subject>Hydrolysis</subject><subject>Iron - chemistry</subject><subject>Iron Compounds - isolation & purification</subject><subject>Leaching</subject><subject>Metallurgy</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Minerals - analysis</subject><subject>Mining</subject><subject>Natural water pollution</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Oxalates - chemistry</subject><subject>Oxidation</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Protons</subject><subject>Sulfates - analysis</subject><subject>Sulfates - chemistry</subject><subject>Sulfides - analysis</subject><subject>Sulfides - chemistry</subject><subject>Waste Products - analysis</subject><subject>Wastes</subject><subject>Water</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpl0M9LHDEUB_AgFXe1HvwHSqAU6mHse5lkJjnKVq3g4sEWvQ0x84ZGdiaaZAv733fUdRU95RE-vB9fxg4QjhAE_qCkQEgt-i02RSWgUFrhJzYFwLIwZXUzYbsp3QGAKEHvsIlQWGtTmymbzyn_DS3vQuQ_fcp-cNn_I34ylr3NPgw8dPwqh0gtP3a-9XnFT0PsE_fD0wef-4H4tU2Z0me23dlFov31u8f-nJ78nv0qLi7PzmfHF4WVssyFMqZVSpJVBqWyNRpZSeEsVQhApW1bhNKhQInYkhS6rIQlVLLToByZco99f-57H8PDklJuep8cLRZ2oLBMDVZCVKBULUf69R29C8s4jNuNCqWualXpUR0-KxdDSpG65j6O98dVg9A8ZtxsMh7tl3XH5W1P7Ua-hDqCb2tgk7OLLtrB-fTqtEGjQb4669KbrT4M_A8WfIyv</recordid><startdate>20141007</startdate><enddate>20141007</enddate><creator>Li, Jun</creator><creator>Kawashima, Nobuyuki</creator><creator>Fan, Rong</creator><creator>Schumann, Russell C</creator><creator>Gerson, Andrea R</creator><creator>Smart, Roger St.C</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7TN</scope><scope>7TV</scope><scope>7U6</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20141007</creationdate><title>Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes</title><author>Li, Jun ; Kawashima, Nobuyuki ; Fan, Rong ; Schumann, Russell C ; Gerson, Andrea R ; Smart, Roger St.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acid mine drainage</topic><topic>Acidity</topic><topic>Acids</topic><topic>Acids - analysis</topic><topic>Applied sciences</topic><topic>Biological and physicochemical phenomena</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental Monitoring - methods</topic><topic>Exact sciences and technology</topic><topic>Ferric Compounds - chemistry</topic><topic>Hydrolysis</topic><topic>Iron - chemistry</topic><topic>Iron Compounds - isolation & purification</topic><topic>Leaching</topic><topic>Metallurgy</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Minerals - analysis</topic><topic>Mining</topic><topic>Natural water pollution</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Oxalates - chemistry</topic><topic>Oxidation</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Protons</topic><topic>Sulfates - analysis</topic><topic>Sulfates - chemistry</topic><topic>Sulfides - analysis</topic><topic>Sulfides - chemistry</topic><topic>Waste Products - analysis</topic><topic>Wastes</topic><topic>Water</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Kawashima, Nobuyuki</creatorcontrib><creatorcontrib>Fan, Rong</creatorcontrib><creatorcontrib>Schumann, Russell C</creatorcontrib><creatorcontrib>Gerson, Andrea R</creatorcontrib><creatorcontrib>Smart, Roger St.C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jun</au><au>Kawashima, Nobuyuki</au><au>Fan, Rong</au><au>Schumann, Russell C</au><au>Gerson, Andrea R</au><au>Smart, Roger St.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-10-07</date><risdate>2014</risdate><volume>48</volume><issue>19</issue><spage>11445</spage><epage>11452</epage><pages>11445-11452</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25178979</pmid><doi>10.1021/es502482m</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2014-10, Vol.48 (19), p.11445-11452 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1622605574 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Acid mine drainage Acidity Acids Acids - analysis Applied sciences Biological and physicochemical phenomena Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Environmental Monitoring - methods Exact sciences and technology Ferric Compounds - chemistry Hydrolysis Iron - chemistry Iron Compounds - isolation & purification Leaching Metallurgy Mineralogy Minerals Minerals - analysis Mining Natural water pollution Other industrial wastes. Sewage sludge Oxalates - chemistry Oxidation Pollution Pollution, environment geology Protons Sulfates - analysis Sulfates - chemistry Sulfides - analysis Sulfides - chemistry Waste Products - analysis Wastes Water Water treatment and pollution |
title | Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20for%20Distinctive%20Estimation%20of%20Stored%20Acidity%20Forms%20in%20Acid%20Mine%20Wastes&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Li,%20Jun&rft.date=2014-10-07&rft.volume=48&rft.issue=19&rft.spage=11445&rft.epage=11452&rft.pages=11445-11452&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es502482m&rft_dat=%3Cproquest_cross%3E3467639601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1614867568&rft_id=info:pmid/25178979&rfr_iscdi=true |