Loading…

Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes

Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lo...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2014-10, Vol.48 (19), p.11445-11452
Main Authors: Li, Jun, Kawashima, Nobuyuki, Fan, Rong, Schumann, Russell C, Gerson, Andrea R, Smart, Roger St.C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93
cites cdi_FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93
container_end_page 11452
container_issue 19
container_start_page 11445
container_title Environmental science & technology
container_volume 48
creator Li, Jun
Kawashima, Nobuyuki
Fan, Rong
Schumann, Russell C
Gerson, Andrea R
Smart, Roger St.C
description Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.
doi_str_mv 10.1021/es502482m
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1622605574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3467639601</sourcerecordid><originalsourceid>FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93</originalsourceid><addsrcrecordid>eNpl0M9LHDEUB_AgFXe1HvwHSqAU6mHse5lkJjnKVq3g4sEWvQ0x84ZGdiaaZAv733fUdRU95RE-vB9fxg4QjhAE_qCkQEgt-i02RSWgUFrhJzYFwLIwZXUzYbsp3QGAKEHvsIlQWGtTmymbzyn_DS3vQuQ_fcp-cNn_I34ylr3NPgw8dPwqh0gtP3a-9XnFT0PsE_fD0wef-4H4tU2Z0me23dlFov31u8f-nJ78nv0qLi7PzmfHF4WVssyFMqZVSpJVBqWyNRpZSeEsVQhApW1bhNKhQInYkhS6rIQlVLLToByZco99f-57H8PDklJuep8cLRZ2oLBMDVZCVKBULUf69R29C8s4jNuNCqWualXpUR0-KxdDSpG65j6O98dVg9A8ZtxsMh7tl3XH5W1P7Ua-hDqCb2tgk7OLLtrB-fTqtEGjQb4669KbrT4M_A8WfIyv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614867568</pqid></control><display><type>article</type><title>Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Jun ; Kawashima, Nobuyuki ; Fan, Rong ; Schumann, Russell C ; Gerson, Andrea R ; Smart, Roger St.C</creator><creatorcontrib>Li, Jun ; Kawashima, Nobuyuki ; Fan, Rong ; Schumann, Russell C ; Gerson, Andrea R ; Smart, Roger St.C</creatorcontrib><description>Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es502482m</identifier><identifier>PMID: 25178979</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acid mine drainage ; Acidity ; Acids ; Acids - analysis ; Applied sciences ; Biological and physicochemical phenomena ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environmental Monitoring - methods ; Exact sciences and technology ; Ferric Compounds - chemistry ; Hydrolysis ; Iron - chemistry ; Iron Compounds - isolation &amp; purification ; Leaching ; Metallurgy ; Mineralogy ; Minerals ; Minerals - analysis ; Mining ; Natural water pollution ; Other industrial wastes. Sewage sludge ; Oxalates - chemistry ; Oxidation ; Pollution ; Pollution, environment geology ; Protons ; Sulfates - analysis ; Sulfates - chemistry ; Sulfides - analysis ; Sulfides - chemistry ; Waste Products - analysis ; Wastes ; Water ; Water treatment and pollution</subject><ispartof>Environmental science &amp; technology, 2014-10, Vol.48 (19), p.11445-11452</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 7, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93</citedby><cites>FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28919804$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25178979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Kawashima, Nobuyuki</creatorcontrib><creatorcontrib>Fan, Rong</creatorcontrib><creatorcontrib>Schumann, Russell C</creatorcontrib><creatorcontrib>Gerson, Andrea R</creatorcontrib><creatorcontrib>Smart, Roger St.C</creatorcontrib><title>Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.</description><subject>Acid mine drainage</subject><subject>Acidity</subject><subject>Acids</subject><subject>Acids - analysis</subject><subject>Applied sciences</subject><subject>Biological and physicochemical phenomena</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental Monitoring - methods</subject><subject>Exact sciences and technology</subject><subject>Ferric Compounds - chemistry</subject><subject>Hydrolysis</subject><subject>Iron - chemistry</subject><subject>Iron Compounds - isolation &amp; purification</subject><subject>Leaching</subject><subject>Metallurgy</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Minerals - analysis</subject><subject>Mining</subject><subject>Natural water pollution</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Oxalates - chemistry</subject><subject>Oxidation</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Protons</subject><subject>Sulfates - analysis</subject><subject>Sulfates - chemistry</subject><subject>Sulfides - analysis</subject><subject>Sulfides - chemistry</subject><subject>Waste Products - analysis</subject><subject>Wastes</subject><subject>Water</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpl0M9LHDEUB_AgFXe1HvwHSqAU6mHse5lkJjnKVq3g4sEWvQ0x84ZGdiaaZAv733fUdRU95RE-vB9fxg4QjhAE_qCkQEgt-i02RSWgUFrhJzYFwLIwZXUzYbsp3QGAKEHvsIlQWGtTmymbzyn_DS3vQuQ_fcp-cNn_I34ylr3NPgw8dPwqh0gtP3a-9XnFT0PsE_fD0wef-4H4tU2Z0me23dlFov31u8f-nJ78nv0qLi7PzmfHF4WVssyFMqZVSpJVBqWyNRpZSeEsVQhApW1bhNKhQInYkhS6rIQlVLLToByZco99f-57H8PDklJuep8cLRZ2oLBMDVZCVKBULUf69R29C8s4jNuNCqWualXpUR0-KxdDSpG65j6O98dVg9A8ZtxsMh7tl3XH5W1P7Ua-hDqCb2tgk7OLLtrB-fTqtEGjQb4669KbrT4M_A8WfIyv</recordid><startdate>20141007</startdate><enddate>20141007</enddate><creator>Li, Jun</creator><creator>Kawashima, Nobuyuki</creator><creator>Fan, Rong</creator><creator>Schumann, Russell C</creator><creator>Gerson, Andrea R</creator><creator>Smart, Roger St.C</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7TN</scope><scope>7TV</scope><scope>7U6</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20141007</creationdate><title>Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes</title><author>Li, Jun ; Kawashima, Nobuyuki ; Fan, Rong ; Schumann, Russell C ; Gerson, Andrea R ; Smart, Roger St.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acid mine drainage</topic><topic>Acidity</topic><topic>Acids</topic><topic>Acids - analysis</topic><topic>Applied sciences</topic><topic>Biological and physicochemical phenomena</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental Monitoring - methods</topic><topic>Exact sciences and technology</topic><topic>Ferric Compounds - chemistry</topic><topic>Hydrolysis</topic><topic>Iron - chemistry</topic><topic>Iron Compounds - isolation &amp; purification</topic><topic>Leaching</topic><topic>Metallurgy</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Minerals - analysis</topic><topic>Mining</topic><topic>Natural water pollution</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Oxalates - chemistry</topic><topic>Oxidation</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Protons</topic><topic>Sulfates - analysis</topic><topic>Sulfates - chemistry</topic><topic>Sulfides - analysis</topic><topic>Sulfides - chemistry</topic><topic>Waste Products - analysis</topic><topic>Wastes</topic><topic>Water</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Kawashima, Nobuyuki</creatorcontrib><creatorcontrib>Fan, Rong</creatorcontrib><creatorcontrib>Schumann, Russell C</creatorcontrib><creatorcontrib>Gerson, Andrea R</creatorcontrib><creatorcontrib>Smart, Roger St.C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jun</au><au>Kawashima, Nobuyuki</au><au>Fan, Rong</au><au>Schumann, Russell C</au><au>Gerson, Andrea R</au><au>Smart, Roger St.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-10-07</date><risdate>2014</risdate><volume>48</volume><issue>19</issue><spage>11445</spage><epage>11452</epage><pages>11445-11452</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25178979</pmid><doi>10.1021/es502482m</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2014-10, Vol.48 (19), p.11445-11452
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1622605574
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Acid mine drainage
Acidity
Acids
Acids - analysis
Applied sciences
Biological and physicochemical phenomena
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Environmental Monitoring - methods
Exact sciences and technology
Ferric Compounds - chemistry
Hydrolysis
Iron - chemistry
Iron Compounds - isolation & purification
Leaching
Metallurgy
Mineralogy
Minerals
Minerals - analysis
Mining
Natural water pollution
Other industrial wastes. Sewage sludge
Oxalates - chemistry
Oxidation
Pollution
Pollution, environment geology
Protons
Sulfates - analysis
Sulfates - chemistry
Sulfides - analysis
Sulfides - chemistry
Waste Products - analysis
Wastes
Water
Water treatment and pollution
title Method for Distinctive Estimation of Stored Acidity Forms in Acid Mine Wastes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20for%20Distinctive%20Estimation%20of%20Stored%20Acidity%20Forms%20in%20Acid%20Mine%20Wastes&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Li,%20Jun&rft.date=2014-10-07&rft.volume=48&rft.issue=19&rft.spage=11445&rft.epage=11452&rft.pages=11445-11452&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es502482m&rft_dat=%3Cproquest_cross%3E3467639601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a443t-599d554ea59145a7194642cae6100e3add103c121411de428362ae154f805ce93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1614867568&rft_id=info:pmid/25178979&rfr_iscdi=true