Loading…

High-efficiency cascaded Raman fiber laser with random distributed feedback

Cascaded lasing provided by Raman gain (at 1115-nm pumping) and random distributed feedback (via Rayleigh backscattering) in a 1.65-km phosphosilicate fiber is studied. Output power for the second Stokes component (1398 nm) exceeds 5 W at pump power of 11 W. In contrast to conventional cascaded Rama...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2014-10, Vol.22 (21), p.24929-24934
Main Authors: Babin, S A, Vatnik, I D, Laptev, A Yu, Bubnov, M M, Dianov, E M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cascaded lasing provided by Raman gain (at 1115-nm pumping) and random distributed feedback (via Rayleigh backscattering) in a 1.65-km phosphosilicate fiber is studied. Output power for the second Stokes component (1398 nm) exceeds 5 W at pump power of 11 W. In contrast to conventional cascaded Raman laser with high-Q cavity for the intermediate first Stokes component, there is no cavity here and no cavity losses, correspondingly. Longitudinal power distribution is shown to be quite different also. As a result, the efficiency of pump to 2nd Stokes wave conversion is not influenced by the intermediate stage and depends only on the integral attenuation in the fiber. Herewith, the number of generated 2nd Stokes photons at the output may even exceed the absorbed pump photons due to the lower attenuation of Stokes waves.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.22.024929