Loading…
Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides
Enhancements of the continuous-wave four-wave mixing conversion efficiency and bandwidth are accomplished through the application of plasma-assisted photoresist reflow to reduce the sidewall roughness of sub-square-micron-modal area waveguides. Nonlinear AlGaAs optical waveguides with a propagation...
Saved in:
Published in: | Optics express 2014-11, Vol.22 (22), p.26814-26824 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Enhancements of the continuous-wave four-wave mixing conversion efficiency and bandwidth are accomplished through the application of plasma-assisted photoresist reflow to reduce the sidewall roughness of sub-square-micron-modal area waveguides. Nonlinear AlGaAs optical waveguides with a propagation loss of 0.56 dB/cm demonstrate continuous-wave four-wave mixing conversion efficiency of -7.8 dB. Narrow waveguides that are fabricated with engineered processing produce waveguides with uncoated sidewalls and anti-reflection coatings that show group velocity dispersion of +0.22 ps²/m. Waveguides that are 5-mm long demonstrate broadband four-wave mixing conversion efficiencies with a half-width 3-dB bandwidth of 63.8-nm. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.22.026814 |