Loading…
Rapid accumulation of intracellular 2-keto-3-deoxy-6-phosphogluconate in an Entner-Doudoroff aldolase mutant results in bacteriostasis
Abstract The accumulation of 2-keto-3-deoxy-6-phosphogluconate, the key intermediate of the Entner-Doudoroff pathway, has long been thought to inhibit growth of bacteria, but careful measurements of 2-keto-3-deoxy-6-phosphogluconate accumulation by growing cells and the correlation of intracellular...
Saved in:
Published in: | FEMS microbiology letters 1998-02, Vol.159 (2), p.261-266 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
The accumulation of 2-keto-3-deoxy-6-phosphogluconate, the key intermediate of the Entner-Doudoroff pathway, has long been thought to inhibit growth of bacteria, but careful measurements of 2-keto-3-deoxy-6-phosphogluconate accumulation by growing cells and the correlation of intracellular 2-keto-3-deoxy-6-phosphogluconate levels to growth inhibition had not been made. A system designed for this purposed was developed in Escherichia coli strains, allowing 2-keto-3-deoxy-6-phosphogluconate accumulation to be experimentally induced and measured by extraction of the cell pool. Addition of gluconate to a strain which lacked 2-keto-3-deoxy-6-phosphogluconate aldolase and overproduced 6-phosphogluconate dehydratase resulted in an increase in the intracellular concentration of 2-keto-3-deoxy-6-phosphogluconate from undetectable levels to 2.0 mM within 15 s, as measured by anion-exchange HPLC. The accumulation of 2-keto-3-deoxy-6-phosphogluconate was correlated with an immediate and significant decrease in growth; this inhibition was determined to be bacteriostatic and not bactericidal. It had been proposed that the mechanism of 2-keto-3-deoxy-6-phosphogluconate toxicity involves competitive inhibition of 6-phosphogluconate dehydrogenase and the consequent block of the pentose phosphate pathway. An experiment addressing this hypothesis failed to provide any supporting data. |
---|---|
ISSN: | 0378-1097 1574-6968 |
DOI: | 10.1111/j.1574-6968.1998.tb12870.x |