Loading…
Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data
Equations predicting the variance for a mean insect density have been widely used to calculate the precision of density estimates. Traditionally, the logarithm of the variance is regressed against the logarithm of the mean giving a linear equation. We fit a single nonlinear variance-mean regression...
Saved in:
Published in: | Environmental entomology 1997-12, Vol.26 (6), p.1213-1223 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c419t-aaff66998023eb5847c8a825aed46fffb0b514b63d428ad69b3d6ca92e1ab3ed3 |
---|---|
cites | |
container_end_page | 1223 |
container_issue | 6 |
container_start_page | 1213 |
container_title | Environmental entomology |
container_volume | 26 |
creator | Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.) Subramanyam, B Flinn, P.W |
description | Equations predicting the variance for a mean insect density have been widely used to calculate the precision of density estimates. Traditionally, the logarithm of the variance is regressed against the logarithm of the mean giving a linear equation. We fit a single nonlinear variance-mean regression equation to 4 stored-product insect sampling data sets. This generic nonlinear regression equation described the stored-product insect sampling data for 25 additional studies, 3 different sampling methods, and the 6 most commonly encountered species. The asymptotic slope of this generic nonlinear regression equation increased with insect density, and at mean densities of 0.01, 0.1, 1, 10, and 100 insects per sample unit was 1.06, 1.32, 1.64, 2.05, and 2.55, respectively. This density-dependent change in the asymptotic slope explains the differences among studies in the slopes of linear regression equations. We generated a similar regression equation by randomly assigning insects to sampling units to simulate random dispersal of insects in a grain mass. This suggests that the observed insect sampling distributions could be the result of random dispersal, and that the mechanism underlying the regression equation is fairly general. Compared with the predictions of the generic nonlinear regression equation, the linear regression equation overpredicted the 95% CL within the 0.3-3 insects per sample unit density range, and underpredicted them at higher or lower insect densities. This generic nonlinear regression equation can be used to calculate the precision of mean insect density estimates over a 0.025-100 insects per sample unit density range and thus reduce the cost of developing new sampling programs |
doi_str_mv | 10.1093/ee/26.6.1213 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16278043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16278043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-aaff66998023eb5847c8a825aed46fffb0b514b63d428ad69b3d6ca92e1ab3ed3</originalsourceid><addsrcrecordid>eNo9kE1rGzEQQEVJoY6bW68FHUJOXVtfq5WOISRtwKSH1qE3MasdGYW15EjrQv59N9h0LgPDm3d4hHzhbMWZlWvEtdArveKCyw9kwa00jbBSX5AFY0o3QrR_PpHLWl_YPEZ0C_L8lNMYE0KJ0xvNgQLdYcISPf073yB5bPYIieLrEaaYEw250DrlgkOzKxATjamin2iF_WE27egAE3wmHwOMFa_Oe0m2D_e_7340m5_fH-9uN41X3E4NQAhaW2uYkNi3RnXegBEt4KB0CKFnfctVr-WghIFB214O2oMVyKGXOMgluTl5DyW_HrFObh-rx3GEhPlYHdeiM0zJGfx2An3JtRYM7lDiHsqb48y9x3OITmin3Xu8Gb8-e6F6GEOZQ8T6_0dwpTslZuzrCQuQHezKjGx_cWs71nWdMvIfsRB5Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16278043</pqid></control><display><type>article</type><title>Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data</title><source>Oxford Journals Online</source><creator>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.) ; Subramanyam, B ; Flinn, P.W</creator><creatorcontrib>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.) ; Subramanyam, B ; Flinn, P.W</creatorcontrib><description>Equations predicting the variance for a mean insect density have been widely used to calculate the precision of density estimates. Traditionally, the logarithm of the variance is regressed against the logarithm of the mean giving a linear equation. We fit a single nonlinear variance-mean regression equation to 4 stored-product insect sampling data sets. This generic nonlinear regression equation described the stored-product insect sampling data for 25 additional studies, 3 different sampling methods, and the 6 most commonly encountered species. The asymptotic slope of this generic nonlinear regression equation increased with insect density, and at mean densities of 0.01, 0.1, 1, 10, and 100 insects per sample unit was 1.06, 1.32, 1.64, 2.05, and 2.55, respectively. This density-dependent change in the asymptotic slope explains the differences among studies in the slopes of linear regression equations. We generated a similar regression equation by randomly assigning insects to sampling units to simulate random dispersal of insects in a grain mass. This suggests that the observed insect sampling distributions could be the result of random dispersal, and that the mechanism underlying the regression equation is fairly general. Compared with the predictions of the generic nonlinear regression equation, the linear regression equation overpredicted the 95% CL within the 0.3-3 insects per sample unit density range, and underpredicted them at higher or lower insect densities. This generic nonlinear regression equation can be used to calculate the precision of mean insect density estimates over a 0.025-100 insects per sample unit density range and thus reduce the cost of developing new sampling programs</description><identifier>ISSN: 0046-225X</identifier><identifier>EISSN: 1938-2936</identifier><identifier>DOI: 10.1093/ee/26.6.1213</identifier><identifier>CODEN: EVETBX</identifier><language>eng</language><publisher>Lanham, MD: Entomological Society of America</publisher><subject>Biological and medical sciences ; DENSIDAD DE LA POBLACION ; DENSITE DE POPULATION ; ECHANTILLONNAGE ; ESTIMATES ; Fundamental and applied biological sciences. Psychology ; Invertebrates ; MATEMATICAS ; MATHEMATICS ; MATHEMATIQUE ; Medically important nuisances and vectors, pests of stored products and materials: population survey and control ; METHODE STATISTIQUE ; METODOS ESTADISTICOS ; MUESTREO ; Pests of stored products ; PLAGAS DE PRODUCTOS ALMACENADOS ; POPULATION DENSITY ; RAVAGEUR DES DENREES ENTREPOSEES ; REGRESSION ANALYSIS ; SAMPLING ; STATISTICAL METHODS ; STORED PRODUCTS PESTS</subject><ispartof>Environmental entomology, 1997-12, Vol.26 (6), p.1213-1223</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-aaff66998023eb5847c8a825aed46fffb0b514b63d428ad69b3d6ca92e1ab3ed3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2146742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.)</creatorcontrib><creatorcontrib>Subramanyam, B</creatorcontrib><creatorcontrib>Flinn, P.W</creatorcontrib><title>Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data</title><title>Environmental entomology</title><description>Equations predicting the variance for a mean insect density have been widely used to calculate the precision of density estimates. Traditionally, the logarithm of the variance is regressed against the logarithm of the mean giving a linear equation. We fit a single nonlinear variance-mean regression equation to 4 stored-product insect sampling data sets. This generic nonlinear regression equation described the stored-product insect sampling data for 25 additional studies, 3 different sampling methods, and the 6 most commonly encountered species. The asymptotic slope of this generic nonlinear regression equation increased with insect density, and at mean densities of 0.01, 0.1, 1, 10, and 100 insects per sample unit was 1.06, 1.32, 1.64, 2.05, and 2.55, respectively. This density-dependent change in the asymptotic slope explains the differences among studies in the slopes of linear regression equations. We generated a similar regression equation by randomly assigning insects to sampling units to simulate random dispersal of insects in a grain mass. This suggests that the observed insect sampling distributions could be the result of random dispersal, and that the mechanism underlying the regression equation is fairly general. Compared with the predictions of the generic nonlinear regression equation, the linear regression equation overpredicted the 95% CL within the 0.3-3 insects per sample unit density range, and underpredicted them at higher or lower insect densities. This generic nonlinear regression equation can be used to calculate the precision of mean insect density estimates over a 0.025-100 insects per sample unit density range and thus reduce the cost of developing new sampling programs</description><subject>Biological and medical sciences</subject><subject>DENSIDAD DE LA POBLACION</subject><subject>DENSITE DE POPULATION</subject><subject>ECHANTILLONNAGE</subject><subject>ESTIMATES</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Invertebrates</subject><subject>MATEMATICAS</subject><subject>MATHEMATICS</subject><subject>MATHEMATIQUE</subject><subject>Medically important nuisances and vectors, pests of stored products and materials: population survey and control</subject><subject>METHODE STATISTIQUE</subject><subject>METODOS ESTADISTICOS</subject><subject>MUESTREO</subject><subject>Pests of stored products</subject><subject>PLAGAS DE PRODUCTOS ALMACENADOS</subject><subject>POPULATION DENSITY</subject><subject>RAVAGEUR DES DENREES ENTREPOSEES</subject><subject>REGRESSION ANALYSIS</subject><subject>SAMPLING</subject><subject>STATISTICAL METHODS</subject><subject>STORED PRODUCTS PESTS</subject><issn>0046-225X</issn><issn>1938-2936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rGzEQQEVJoY6bW68FHUJOXVtfq5WOISRtwKSH1qE3MasdGYW15EjrQv59N9h0LgPDm3d4hHzhbMWZlWvEtdArveKCyw9kwa00jbBSX5AFY0o3QrR_PpHLWl_YPEZ0C_L8lNMYE0KJ0xvNgQLdYcISPf073yB5bPYIieLrEaaYEw250DrlgkOzKxATjamin2iF_WE27egAE3wmHwOMFa_Oe0m2D_e_7340m5_fH-9uN41X3E4NQAhaW2uYkNi3RnXegBEt4KB0CKFnfctVr-WghIFB214O2oMVyKGXOMgluTl5DyW_HrFObh-rx3GEhPlYHdeiM0zJGfx2An3JtRYM7lDiHsqb48y9x3OITmin3Xu8Gb8-e6F6GEOZQ8T6_0dwpTslZuzrCQuQHezKjGx_cWs71nWdMvIfsRB5Rg</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.)</creator><creator>Subramanyam, B</creator><creator>Flinn, P.W</creator><general>Entomological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope></search><sort><creationdate>19971201</creationdate><title>Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data</title><author>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.) ; Subramanyam, B ; Flinn, P.W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-aaff66998023eb5847c8a825aed46fffb0b514b63d428ad69b3d6ca92e1ab3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Biological and medical sciences</topic><topic>DENSIDAD DE LA POBLACION</topic><topic>DENSITE DE POPULATION</topic><topic>ECHANTILLONNAGE</topic><topic>ESTIMATES</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Invertebrates</topic><topic>MATEMATICAS</topic><topic>MATHEMATICS</topic><topic>MATHEMATIQUE</topic><topic>Medically important nuisances and vectors, pests of stored products and materials: population survey and control</topic><topic>METHODE STATISTIQUE</topic><topic>METODOS ESTADISTICOS</topic><topic>MUESTREO</topic><topic>Pests of stored products</topic><topic>PLAGAS DE PRODUCTOS ALMACENADOS</topic><topic>POPULATION DENSITY</topic><topic>RAVAGEUR DES DENREES ENTREPOSEES</topic><topic>REGRESSION ANALYSIS</topic><topic>SAMPLING</topic><topic>STATISTICAL METHODS</topic><topic>STORED PRODUCTS PESTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.)</creatorcontrib><creatorcontrib>Subramanyam, B</creatorcontrib><creatorcontrib>Flinn, P.W</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Environmental entomology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.)</au><au>Subramanyam, B</au><au>Flinn, P.W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data</atitle><jtitle>Environmental entomology</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>26</volume><issue>6</issue><spage>1213</spage><epage>1223</epage><pages>1213-1223</pages><issn>0046-225X</issn><eissn>1938-2936</eissn><coden>EVETBX</coden><abstract>Equations predicting the variance for a mean insect density have been widely used to calculate the precision of density estimates. Traditionally, the logarithm of the variance is regressed against the logarithm of the mean giving a linear equation. We fit a single nonlinear variance-mean regression equation to 4 stored-product insect sampling data sets. This generic nonlinear regression equation described the stored-product insect sampling data for 25 additional studies, 3 different sampling methods, and the 6 most commonly encountered species. The asymptotic slope of this generic nonlinear regression equation increased with insect density, and at mean densities of 0.01, 0.1, 1, 10, and 100 insects per sample unit was 1.06, 1.32, 1.64, 2.05, and 2.55, respectively. This density-dependent change in the asymptotic slope explains the differences among studies in the slopes of linear regression equations. We generated a similar regression equation by randomly assigning insects to sampling units to simulate random dispersal of insects in a grain mass. This suggests that the observed insect sampling distributions could be the result of random dispersal, and that the mechanism underlying the regression equation is fairly general. Compared with the predictions of the generic nonlinear regression equation, the linear regression equation overpredicted the 95% CL within the 0.3-3 insects per sample unit density range, and underpredicted them at higher or lower insect densities. This generic nonlinear regression equation can be used to calculate the precision of mean insect density estimates over a 0.025-100 insects per sample unit density range and thus reduce the cost of developing new sampling programs</abstract><cop>Lanham, MD</cop><pub>Entomological Society of America</pub><doi>10.1093/ee/26.6.1213</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-225X |
ispartof | Environmental entomology, 1997-12, Vol.26 (6), p.1213-1223 |
issn | 0046-225X 1938-2936 |
language | eng |
recordid | cdi_proquest_miscellaneous_16278043 |
source | Oxford Journals Online |
subjects | Biological and medical sciences DENSIDAD DE LA POBLACION DENSITE DE POPULATION ECHANTILLONNAGE ESTIMATES Fundamental and applied biological sciences. Psychology Invertebrates MATEMATICAS MATHEMATICS MATHEMATIQUE Medically important nuisances and vectors, pests of stored products and materials: population survey and control METHODE STATISTIQUE METODOS ESTADISTICOS MUESTREO Pests of stored products PLAGAS DE PRODUCTOS ALMACENADOS POPULATION DENSITY RAVAGEUR DES DENREES ENTREPOSEES REGRESSION ANALYSIS SAMPLING STATISTICAL METHODS STORED PRODUCTS PESTS |
title | Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinearity%20of%20a%20generic%20variance-mean%20equation%20for%20stored-grain%20insect%20sampling%20data&rft.jtitle=Environmental%20entomology&rft.au=Hagstrum,%20D.W.%20(Grain%20Marketing%20and%20Production%20Research%20Center,%20ARS,%20USDA,%20Manhattan,%20KS.)&rft.date=1997-12-01&rft.volume=26&rft.issue=6&rft.spage=1213&rft.epage=1223&rft.pages=1213-1223&rft.issn=0046-225X&rft.eissn=1938-2936&rft.coden=EVETBX&rft_id=info:doi/10.1093/ee/26.6.1213&rft_dat=%3Cproquest_cross%3E16278043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-aaff66998023eb5847c8a825aed46fffb0b514b63d428ad69b3d6ca92e1ab3ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16278043&rft_id=info:pmid/&rfr_iscdi=true |