Loading…

Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data

Equations predicting the variance for a mean insect density have been widely used to calculate the precision of density estimates. Traditionally, the logarithm of the variance is regressed against the logarithm of the mean giving a linear equation. We fit a single nonlinear variance-mean regression...

Full description

Saved in:
Bibliographic Details
Published in:Environmental entomology 1997-12, Vol.26 (6), p.1213-1223
Main Authors: Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.), Subramanyam, B, Flinn, P.W
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-aaff66998023eb5847c8a825aed46fffb0b514b63d428ad69b3d6ca92e1ab3ed3
cites
container_end_page 1223
container_issue 6
container_start_page 1213
container_title Environmental entomology
container_volume 26
creator Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.)
Subramanyam, B
Flinn, P.W
description Equations predicting the variance for a mean insect density have been widely used to calculate the precision of density estimates. Traditionally, the logarithm of the variance is regressed against the logarithm of the mean giving a linear equation. We fit a single nonlinear variance-mean regression equation to 4 stored-product insect sampling data sets. This generic nonlinear regression equation described the stored-product insect sampling data for 25 additional studies, 3 different sampling methods, and the 6 most commonly encountered species. The asymptotic slope of this generic nonlinear regression equation increased with insect density, and at mean densities of 0.01, 0.1, 1, 10, and 100 insects per sample unit was 1.06, 1.32, 1.64, 2.05, and 2.55, respectively. This density-dependent change in the asymptotic slope explains the differences among studies in the slopes of linear regression equations. We generated a similar regression equation by randomly assigning insects to sampling units to simulate random dispersal of insects in a grain mass. This suggests that the observed insect sampling distributions could be the result of random dispersal, and that the mechanism underlying the regression equation is fairly general. Compared with the predictions of the generic nonlinear regression equation, the linear regression equation overpredicted the 95% CL within the 0.3-3 insects per sample unit density range, and underpredicted them at higher or lower insect densities. This generic nonlinear regression equation can be used to calculate the precision of mean insect density estimates over a 0.025-100 insects per sample unit density range and thus reduce the cost of developing new sampling programs
doi_str_mv 10.1093/ee/26.6.1213
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16278043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16278043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-aaff66998023eb5847c8a825aed46fffb0b514b63d428ad69b3d6ca92e1ab3ed3</originalsourceid><addsrcrecordid>eNo9kE1rGzEQQEVJoY6bW68FHUJOXVtfq5WOISRtwKSH1qE3MasdGYW15EjrQv59N9h0LgPDm3d4hHzhbMWZlWvEtdArveKCyw9kwa00jbBSX5AFY0o3QrR_PpHLWl_YPEZ0C_L8lNMYE0KJ0xvNgQLdYcISPf073yB5bPYIieLrEaaYEw250DrlgkOzKxATjamin2iF_WE27egAE3wmHwOMFa_Oe0m2D_e_7340m5_fH-9uN41X3E4NQAhaW2uYkNi3RnXegBEt4KB0CKFnfctVr-WghIFB214O2oMVyKGXOMgluTl5DyW_HrFObh-rx3GEhPlYHdeiM0zJGfx2An3JtRYM7lDiHsqb48y9x3OITmin3Xu8Gb8-e6F6GEOZQ8T6_0dwpTslZuzrCQuQHezKjGx_cWs71nWdMvIfsRB5Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16278043</pqid></control><display><type>article</type><title>Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data</title><source>Oxford Journals Online</source><creator>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.) ; Subramanyam, B ; Flinn, P.W</creator><creatorcontrib>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.) ; Subramanyam, B ; Flinn, P.W</creatorcontrib><description>Equations predicting the variance for a mean insect density have been widely used to calculate the precision of density estimates. Traditionally, the logarithm of the variance is regressed against the logarithm of the mean giving a linear equation. We fit a single nonlinear variance-mean regression equation to 4 stored-product insect sampling data sets. This generic nonlinear regression equation described the stored-product insect sampling data for 25 additional studies, 3 different sampling methods, and the 6 most commonly encountered species. The asymptotic slope of this generic nonlinear regression equation increased with insect density, and at mean densities of 0.01, 0.1, 1, 10, and 100 insects per sample unit was 1.06, 1.32, 1.64, 2.05, and 2.55, respectively. This density-dependent change in the asymptotic slope explains the differences among studies in the slopes of linear regression equations. We generated a similar regression equation by randomly assigning insects to sampling units to simulate random dispersal of insects in a grain mass. This suggests that the observed insect sampling distributions could be the result of random dispersal, and that the mechanism underlying the regression equation is fairly general. Compared with the predictions of the generic nonlinear regression equation, the linear regression equation overpredicted the 95% CL within the 0.3-3 insects per sample unit density range, and underpredicted them at higher or lower insect densities. This generic nonlinear regression equation can be used to calculate the precision of mean insect density estimates over a 0.025-100 insects per sample unit density range and thus reduce the cost of developing new sampling programs</description><identifier>ISSN: 0046-225X</identifier><identifier>EISSN: 1938-2936</identifier><identifier>DOI: 10.1093/ee/26.6.1213</identifier><identifier>CODEN: EVETBX</identifier><language>eng</language><publisher>Lanham, MD: Entomological Society of America</publisher><subject>Biological and medical sciences ; DENSIDAD DE LA POBLACION ; DENSITE DE POPULATION ; ECHANTILLONNAGE ; ESTIMATES ; Fundamental and applied biological sciences. Psychology ; Invertebrates ; MATEMATICAS ; MATHEMATICS ; MATHEMATIQUE ; Medically important nuisances and vectors, pests of stored products and materials: population survey and control ; METHODE STATISTIQUE ; METODOS ESTADISTICOS ; MUESTREO ; Pests of stored products ; PLAGAS DE PRODUCTOS ALMACENADOS ; POPULATION DENSITY ; RAVAGEUR DES DENREES ENTREPOSEES ; REGRESSION ANALYSIS ; SAMPLING ; STATISTICAL METHODS ; STORED PRODUCTS PESTS</subject><ispartof>Environmental entomology, 1997-12, Vol.26 (6), p.1213-1223</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-aaff66998023eb5847c8a825aed46fffb0b514b63d428ad69b3d6ca92e1ab3ed3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2146742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.)</creatorcontrib><creatorcontrib>Subramanyam, B</creatorcontrib><creatorcontrib>Flinn, P.W</creatorcontrib><title>Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data</title><title>Environmental entomology</title><description>Equations predicting the variance for a mean insect density have been widely used to calculate the precision of density estimates. Traditionally, the logarithm of the variance is regressed against the logarithm of the mean giving a linear equation. We fit a single nonlinear variance-mean regression equation to 4 stored-product insect sampling data sets. This generic nonlinear regression equation described the stored-product insect sampling data for 25 additional studies, 3 different sampling methods, and the 6 most commonly encountered species. The asymptotic slope of this generic nonlinear regression equation increased with insect density, and at mean densities of 0.01, 0.1, 1, 10, and 100 insects per sample unit was 1.06, 1.32, 1.64, 2.05, and 2.55, respectively. This density-dependent change in the asymptotic slope explains the differences among studies in the slopes of linear regression equations. We generated a similar regression equation by randomly assigning insects to sampling units to simulate random dispersal of insects in a grain mass. This suggests that the observed insect sampling distributions could be the result of random dispersal, and that the mechanism underlying the regression equation is fairly general. Compared with the predictions of the generic nonlinear regression equation, the linear regression equation overpredicted the 95% CL within the 0.3-3 insects per sample unit density range, and underpredicted them at higher or lower insect densities. This generic nonlinear regression equation can be used to calculate the precision of mean insect density estimates over a 0.025-100 insects per sample unit density range and thus reduce the cost of developing new sampling programs</description><subject>Biological and medical sciences</subject><subject>DENSIDAD DE LA POBLACION</subject><subject>DENSITE DE POPULATION</subject><subject>ECHANTILLONNAGE</subject><subject>ESTIMATES</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Invertebrates</subject><subject>MATEMATICAS</subject><subject>MATHEMATICS</subject><subject>MATHEMATIQUE</subject><subject>Medically important nuisances and vectors, pests of stored products and materials: population survey and control</subject><subject>METHODE STATISTIQUE</subject><subject>METODOS ESTADISTICOS</subject><subject>MUESTREO</subject><subject>Pests of stored products</subject><subject>PLAGAS DE PRODUCTOS ALMACENADOS</subject><subject>POPULATION DENSITY</subject><subject>RAVAGEUR DES DENREES ENTREPOSEES</subject><subject>REGRESSION ANALYSIS</subject><subject>SAMPLING</subject><subject>STATISTICAL METHODS</subject><subject>STORED PRODUCTS PESTS</subject><issn>0046-225X</issn><issn>1938-2936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rGzEQQEVJoY6bW68FHUJOXVtfq5WOISRtwKSH1qE3MasdGYW15EjrQv59N9h0LgPDm3d4hHzhbMWZlWvEtdArveKCyw9kwa00jbBSX5AFY0o3QrR_PpHLWl_YPEZ0C_L8lNMYE0KJ0xvNgQLdYcISPf073yB5bPYIieLrEaaYEw250DrlgkOzKxATjamin2iF_WE27egAE3wmHwOMFa_Oe0m2D_e_7340m5_fH-9uN41X3E4NQAhaW2uYkNi3RnXegBEt4KB0CKFnfctVr-WghIFB214O2oMVyKGXOMgluTl5DyW_HrFObh-rx3GEhPlYHdeiM0zJGfx2An3JtRYM7lDiHsqb48y9x3OITmin3Xu8Gb8-e6F6GEOZQ8T6_0dwpTslZuzrCQuQHezKjGx_cWs71nWdMvIfsRB5Rg</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.)</creator><creator>Subramanyam, B</creator><creator>Flinn, P.W</creator><general>Entomological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope></search><sort><creationdate>19971201</creationdate><title>Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data</title><author>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.) ; Subramanyam, B ; Flinn, P.W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-aaff66998023eb5847c8a825aed46fffb0b514b63d428ad69b3d6ca92e1ab3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Biological and medical sciences</topic><topic>DENSIDAD DE LA POBLACION</topic><topic>DENSITE DE POPULATION</topic><topic>ECHANTILLONNAGE</topic><topic>ESTIMATES</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Invertebrates</topic><topic>MATEMATICAS</topic><topic>MATHEMATICS</topic><topic>MATHEMATIQUE</topic><topic>Medically important nuisances and vectors, pests of stored products and materials: population survey and control</topic><topic>METHODE STATISTIQUE</topic><topic>METODOS ESTADISTICOS</topic><topic>MUESTREO</topic><topic>Pests of stored products</topic><topic>PLAGAS DE PRODUCTOS ALMACENADOS</topic><topic>POPULATION DENSITY</topic><topic>RAVAGEUR DES DENREES ENTREPOSEES</topic><topic>REGRESSION ANALYSIS</topic><topic>SAMPLING</topic><topic>STATISTICAL METHODS</topic><topic>STORED PRODUCTS PESTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.)</creatorcontrib><creatorcontrib>Subramanyam, B</creatorcontrib><creatorcontrib>Flinn, P.W</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Environmental entomology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagstrum, D.W. (Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS.)</au><au>Subramanyam, B</au><au>Flinn, P.W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data</atitle><jtitle>Environmental entomology</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>26</volume><issue>6</issue><spage>1213</spage><epage>1223</epage><pages>1213-1223</pages><issn>0046-225X</issn><eissn>1938-2936</eissn><coden>EVETBX</coden><abstract>Equations predicting the variance for a mean insect density have been widely used to calculate the precision of density estimates. Traditionally, the logarithm of the variance is regressed against the logarithm of the mean giving a linear equation. We fit a single nonlinear variance-mean regression equation to 4 stored-product insect sampling data sets. This generic nonlinear regression equation described the stored-product insect sampling data for 25 additional studies, 3 different sampling methods, and the 6 most commonly encountered species. The asymptotic slope of this generic nonlinear regression equation increased with insect density, and at mean densities of 0.01, 0.1, 1, 10, and 100 insects per sample unit was 1.06, 1.32, 1.64, 2.05, and 2.55, respectively. This density-dependent change in the asymptotic slope explains the differences among studies in the slopes of linear regression equations. We generated a similar regression equation by randomly assigning insects to sampling units to simulate random dispersal of insects in a grain mass. This suggests that the observed insect sampling distributions could be the result of random dispersal, and that the mechanism underlying the regression equation is fairly general. Compared with the predictions of the generic nonlinear regression equation, the linear regression equation overpredicted the 95% CL within the 0.3-3 insects per sample unit density range, and underpredicted them at higher or lower insect densities. This generic nonlinear regression equation can be used to calculate the precision of mean insect density estimates over a 0.025-100 insects per sample unit density range and thus reduce the cost of developing new sampling programs</abstract><cop>Lanham, MD</cop><pub>Entomological Society of America</pub><doi>10.1093/ee/26.6.1213</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-225X
ispartof Environmental entomology, 1997-12, Vol.26 (6), p.1213-1223
issn 0046-225X
1938-2936
language eng
recordid cdi_proquest_miscellaneous_16278043
source Oxford Journals Online
subjects Biological and medical sciences
DENSIDAD DE LA POBLACION
DENSITE DE POPULATION
ECHANTILLONNAGE
ESTIMATES
Fundamental and applied biological sciences. Psychology
Invertebrates
MATEMATICAS
MATHEMATICS
MATHEMATIQUE
Medically important nuisances and vectors, pests of stored products and materials: population survey and control
METHODE STATISTIQUE
METODOS ESTADISTICOS
MUESTREO
Pests of stored products
PLAGAS DE PRODUCTOS ALMACENADOS
POPULATION DENSITY
RAVAGEUR DES DENREES ENTREPOSEES
REGRESSION ANALYSIS
SAMPLING
STATISTICAL METHODS
STORED PRODUCTS PESTS
title Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinearity%20of%20a%20generic%20variance-mean%20equation%20for%20stored-grain%20insect%20sampling%20data&rft.jtitle=Environmental%20entomology&rft.au=Hagstrum,%20D.W.%20(Grain%20Marketing%20and%20Production%20Research%20Center,%20ARS,%20USDA,%20Manhattan,%20KS.)&rft.date=1997-12-01&rft.volume=26&rft.issue=6&rft.spage=1213&rft.epage=1223&rft.pages=1213-1223&rft.issn=0046-225X&rft.eissn=1938-2936&rft.coden=EVETBX&rft_id=info:doi/10.1093/ee/26.6.1213&rft_dat=%3Cproquest_cross%3E16278043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-aaff66998023eb5847c8a825aed46fffb0b514b63d428ad69b3d6ca92e1ab3ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16278043&rft_id=info:pmid/&rfr_iscdi=true