Loading…

Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes

Fourteen Rhodobacter capsulatus mutants unable to grow with xanthine as sole nitrogen source were isolated by random Tn5 mutagenesis. Five of these Tn5 insertions were mapped within two adjacent chromosomal EcoRI fragments hybridizing to oligonucleotides synthesized according to conserved amino acid...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 1998-02, Vol.27 (4), p.853-869
Main Authors: Leimkühler, Silke, Kern, Monika, Solomon, Peter S., McEwan, Alastair G., Schwarz, Günter, Mendel, Ralf R., Klipp, Werner
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fourteen Rhodobacter capsulatus mutants unable to grow with xanthine as sole nitrogen source were isolated by random Tn5 mutagenesis. Five of these Tn5 insertions were mapped within two adjacent chromosomal EcoRI fragments hybridizing to oligonucleotides synthesized according to conserved amino acid sequences of eukaryotic xanthine dehydrogenases. DNA sequence analysis of this region revealed two open reading frames, designated xdhA and xdhB, encoding xanthine dehydrogenase. The deduced amino acid sequence of XDHA contains binding sites for two [2Fe–2S] clusters and FAD, whereas XDHB is predicted to contain the molybdopterin cofactor. In contrast to R. capsulatus, these three cofactor binding sites reside within a single polypeptide chain in eukaryotic xanthine dehydrogenases. The amino acid sequence of xanthine dehydrogenase from R. capsulatus showed a higher degree of similarity to eukaryotic xanthine dehydrogenases than to the xanthine dehydrogenase‐related aldehyde oxidoreductase from Desulphovibrio gigas. The expression of an xdhA–lacZ fusion was induced when hypoxanthine or xanthine was added as sole nitrogen source. Mutations in nifR1 (ntrC) and nifR4 (rpoN, encoding σ54) had no influence on xdh gene expression. A putative activator sensing the availability of substrate seems to respond to xanthine but not to hypoxanthine. The transcriptional start site of xdhA was mapped by primer extension analysis. Comparison with known promoter elements revealed no significant homology. Xanthine dehydrogenase from R. capsulatus was purified to homogeneity. The enzyme consists of two subunits with molecular masses of 85 kDa and 50 kDa respectively. N‐terminal amino acid sequencing of both subunits confirmed the predicted start codons. The molecular mass of the native enzyme was determined to be 275 kDa, indicating an α2β2‐subunit structure. Analysis of the molybdenum cofactor of xanthine dehydrogenase from R. capsulatus revealed that it contains the molybdopterin cofactor and not a molybdopterin dinucleotide derivative.
ISSN:0950-382X
1365-2958
DOI:10.1046/j.1365-2958.1998.00733.x