Loading…

Structure and mechanism of the primosome protein DnaT– functional structures for homotrimerization, dissociation of ssDNA from the PriB·ssDNA complex, and formation of the DnaT·ssDNA complex

In Escherichia coli, the primosome plays an essential role in replication restart after dissociation of replisomes at the damaged replication fork. As well as PriA and PriB, DnaT, an ssDNA‐binding protein, is a key member of the primosome. In this study, limited proteolysis indicated that E. coli Dn...

Full description

Saved in:
Bibliographic Details
Published in:The FEBS journal 2014-12, Vol.281 (23), p.5356-5370
Main Authors: Fujiyama, Saki, Abe, Yoshito, Tani, Junya, Urabe, Masashi, Sato, Kenji, Aramaki, Takahiko, Katayama, Tsutomu, Ueda, Tadashi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5370
container_issue 23
container_start_page 5356
container_title The FEBS journal
container_volume 281
creator Fujiyama, Saki
Abe, Yoshito
Tani, Junya
Urabe, Masashi
Sato, Kenji
Aramaki, Takahiko
Katayama, Tsutomu
Ueda, Tadashi
description In Escherichia coli, the primosome plays an essential role in replication restart after dissociation of replisomes at the damaged replication fork. As well as PriA and PriB, DnaT, an ssDNA‐binding protein, is a key member of the primosome. In this study, limited proteolysis indicated that E. coli DnaT was composed of two domains, consistent with the results of recent studies using Klebsiella pneumonia DnaT. We also found that a specific 24‐residue region (Phe42–Asp66) in the N‐terminal domain (1–88) was crucial for DnaT trimerization. Moreover, we determined the structure of the DnaT C‐terminal domain (89–179) by NMR spectroscopy. This domain included three α‐helices and a long flexible C‐terminal tail, similar to the C‐terminal subdomain of the AAA+ ATPase family. The neighboring histidines, His136 and His137, at a position corresponding to the AAA+ sensor II motif, were suggested to form an ssDNA‐binding site. Furthermore, we found that the acidic linker between the two domains had an activity for dissociating ssDNA from the PriB·ssDNA complexes in a manner supported by the conserved acidic residues Asp70 and Glu76. Thus, these findings provide a novel structural basis for understanding the mechanism of DnaT in exposure of ssDNA and reloading of the replicative helicase at the stalled replication fork. DATABASE: The coordinates used for the ensemble of NMR structures have been deposited in the Protein Data Bank under accession code 2ru8. The NMR data have been deposited in the BioMagResBank (www.bmrb.wisc.edu) under accession number 11549. STRUCTURED DIGITAL ABSTRACT: DnaT and DnaT bind by nuclear magnetic resonance (View interaction) DnaT and PriB bind by isothermal titration calorimetry (View interaction) DnaT and DnaT bind by molecular sieving (View interaction)
doi_str_mv 10.1111/febs.13080
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1628238583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3506204821</sourcerecordid><originalsourceid>FETCH-LOGICAL-f3220-b63a00d85a24281862ec023c66be2d84556bbeedcf2f8e86091ba695b94b12493</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EomVgwwOAJTYsOsU_sess-wtIFSBNK7Gz7OSacRXHxU4EZcU78DDs-yg8CU6mnUW98bX9nXOtexB6Sck-LeudA5v3KSeKPEK79KBiy0oK9XhbV1930LOcrwjhoqrrp2iHCSYF53QX3a6GNDbDmACbvsUBmrXpfQ44OjysAV8nH2KOYariAL7HJ725-Pf7D3Zj3ww-9qbD-d4jYxcTXscQh6KD5H-ZCdnDrc85Nn4-TdY5n3w6xC7FMHf5kvzR7d_NZRPDdQc_9-b_FLuwFU3k1P0B-Rw9cabL8OJuX6DLs9OL4w_L88_vPx4fni8dZ4wsreSGkFYJwyqmqJIMGsJ4I6UF1qpKCGktQNs45hQoSWpqjayFrStLWVXzBXq78S2T-D5CHnTwuYGuMz3EMWsqmWJcCcUL-uYBehXHVEY1UweSibqEsUCv7qjRBmj1NGuTbvR9OgWgG-CH7-Bm-06JnnLXU-56zl2fnR6t5qpoXm80zkRtviWf9eWKESpJWaJWkv8H1v-ulQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627625900</pqid></control><display><type>article</type><title>Structure and mechanism of the primosome protein DnaT– functional structures for homotrimerization, dissociation of ssDNA from the PriB·ssDNA complex, and formation of the DnaT·ssDNA complex</title><source>Wiley</source><source>Free Full-Text Journals in Chemistry</source><creator>Fujiyama, Saki ; Abe, Yoshito ; Tani, Junya ; Urabe, Masashi ; Sato, Kenji ; Aramaki, Takahiko ; Katayama, Tsutomu ; Ueda, Tadashi</creator><creatorcontrib>Fujiyama, Saki ; Abe, Yoshito ; Tani, Junya ; Urabe, Masashi ; Sato, Kenji ; Aramaki, Takahiko ; Katayama, Tsutomu ; Ueda, Tadashi</creatorcontrib><description>In Escherichia coli, the primosome plays an essential role in replication restart after dissociation of replisomes at the damaged replication fork. As well as PriA and PriB, DnaT, an ssDNA‐binding protein, is a key member of the primosome. In this study, limited proteolysis indicated that E. coli DnaT was composed of two domains, consistent with the results of recent studies using Klebsiella pneumonia DnaT. We also found that a specific 24‐residue region (Phe42–Asp66) in the N‐terminal domain (1–88) was crucial for DnaT trimerization. Moreover, we determined the structure of the DnaT C‐terminal domain (89–179) by NMR spectroscopy. This domain included three α‐helices and a long flexible C‐terminal tail, similar to the C‐terminal subdomain of the AAA+ ATPase family. The neighboring histidines, His136 and His137, at a position corresponding to the AAA+ sensor II motif, were suggested to form an ssDNA‐binding site. Furthermore, we found that the acidic linker between the two domains had an activity for dissociating ssDNA from the PriB·ssDNA complexes in a manner supported by the conserved acidic residues Asp70 and Glu76. Thus, these findings provide a novel structural basis for understanding the mechanism of DnaT in exposure of ssDNA and reloading of the replicative helicase at the stalled replication fork. DATABASE: The coordinates used for the ensemble of NMR structures have been deposited in the Protein Data Bank under accession code 2ru8. The NMR data have been deposited in the BioMagResBank (www.bmrb.wisc.edu) under accession number 11549. STRUCTURED DIGITAL ABSTRACT: DnaT and DnaT bind by nuclear magnetic resonance (View interaction) DnaT and PriB bind by isothermal titration calorimetry (View interaction) DnaT and DnaT bind by molecular sieving (View interaction)</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.13080</identifier><identifier>PMID: 25265331</identifier><language>eng</language><publisher>England: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies</publisher><subject>adenosinetriphosphatase ; Amino Acid Sequence ; Binding Sites ; calorimetry ; Deoxyribonucleic acid ; dissociation ; DNA ; DNA, Single-Stranded - chemistry ; DNA-Binding Proteins - chemistry ; DnaT ; E coli ; Escherichia coli ; Escherichia coli - chemistry ; Escherichia coli Proteins - chemistry ; histidine ; Klebsiella pneumoniae ; Magnetic Resonance Spectroscopy ; Molecular biology ; Molecular Sequence Data ; NMR spectroscopy ; nuclear magnetic resonance spectroscopy ; PriB ; primosome ; Protein Multimerization ; protein structure ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; proteolysis ; replication restart ; single-stranded DNA ; titration</subject><ispartof>The FEBS journal, 2014-12, Vol.281 (23), p.5356-5370</ispartof><rights>2014 FEBS</rights><rights>2014 FEBS.</rights><rights>Copyright © 2014 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25265331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujiyama, Saki</creatorcontrib><creatorcontrib>Abe, Yoshito</creatorcontrib><creatorcontrib>Tani, Junya</creatorcontrib><creatorcontrib>Urabe, Masashi</creatorcontrib><creatorcontrib>Sato, Kenji</creatorcontrib><creatorcontrib>Aramaki, Takahiko</creatorcontrib><creatorcontrib>Katayama, Tsutomu</creatorcontrib><creatorcontrib>Ueda, Tadashi</creatorcontrib><title>Structure and mechanism of the primosome protein DnaT– functional structures for homotrimerization, dissociation of ssDNA from the PriB·ssDNA complex, and formation of the DnaT·ssDNA complex</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>In Escherichia coli, the primosome plays an essential role in replication restart after dissociation of replisomes at the damaged replication fork. As well as PriA and PriB, DnaT, an ssDNA‐binding protein, is a key member of the primosome. In this study, limited proteolysis indicated that E. coli DnaT was composed of two domains, consistent with the results of recent studies using Klebsiella pneumonia DnaT. We also found that a specific 24‐residue region (Phe42–Asp66) in the N‐terminal domain (1–88) was crucial for DnaT trimerization. Moreover, we determined the structure of the DnaT C‐terminal domain (89–179) by NMR spectroscopy. This domain included three α‐helices and a long flexible C‐terminal tail, similar to the C‐terminal subdomain of the AAA+ ATPase family. The neighboring histidines, His136 and His137, at a position corresponding to the AAA+ sensor II motif, were suggested to form an ssDNA‐binding site. Furthermore, we found that the acidic linker between the two domains had an activity for dissociating ssDNA from the PriB·ssDNA complexes in a manner supported by the conserved acidic residues Asp70 and Glu76. Thus, these findings provide a novel structural basis for understanding the mechanism of DnaT in exposure of ssDNA and reloading of the replicative helicase at the stalled replication fork. DATABASE: The coordinates used for the ensemble of NMR structures have been deposited in the Protein Data Bank under accession code 2ru8. The NMR data have been deposited in the BioMagResBank (www.bmrb.wisc.edu) under accession number 11549. STRUCTURED DIGITAL ABSTRACT: DnaT and DnaT bind by nuclear magnetic resonance (View interaction) DnaT and PriB bind by isothermal titration calorimetry (View interaction) DnaT and DnaT bind by molecular sieving (View interaction)</description><subject>adenosinetriphosphatase</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>calorimetry</subject><subject>Deoxyribonucleic acid</subject><subject>dissociation</subject><subject>DNA</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DnaT</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>histidine</subject><subject>Klebsiella pneumoniae</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>NMR spectroscopy</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>PriB</subject><subject>primosome</subject><subject>Protein Multimerization</subject><subject>protein structure</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>proteolysis</subject><subject>replication restart</subject><subject>single-stranded DNA</subject><subject>titration</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkc1u1DAUhS0EomVgwwOAJTYsOsU_sess-wtIFSBNK7Gz7OSacRXHxU4EZcU78DDs-yg8CU6mnUW98bX9nXOtexB6Sck-LeudA5v3KSeKPEK79KBiy0oK9XhbV1930LOcrwjhoqrrp2iHCSYF53QX3a6GNDbDmACbvsUBmrXpfQ44OjysAV8nH2KOYariAL7HJ725-Pf7D3Zj3ww-9qbD-d4jYxcTXscQh6KD5H-ZCdnDrc85Nn4-TdY5n3w6xC7FMHf5kvzR7d_NZRPDdQc_9-b_FLuwFU3k1P0B-Rw9cabL8OJuX6DLs9OL4w_L88_vPx4fni8dZ4wsreSGkFYJwyqmqJIMGsJ4I6UF1qpKCGktQNs45hQoSWpqjayFrStLWVXzBXq78S2T-D5CHnTwuYGuMz3EMWsqmWJcCcUL-uYBehXHVEY1UweSibqEsUCv7qjRBmj1NGuTbvR9OgWgG-CH7-Bm-06JnnLXU-56zl2fnR6t5qpoXm80zkRtviWf9eWKESpJWaJWkv8H1v-ulQ</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Fujiyama, Saki</creator><creator>Abe, Yoshito</creator><creator>Tani, Junya</creator><creator>Urabe, Masashi</creator><creator>Sato, Kenji</creator><creator>Aramaki, Takahiko</creator><creator>Katayama, Tsutomu</creator><creator>Ueda, Tadashi</creator><general>Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201412</creationdate><title>Structure and mechanism of the primosome protein DnaT– functional structures for homotrimerization, dissociation of ssDNA from the PriB·ssDNA complex, and formation of the DnaT·ssDNA complex</title><author>Fujiyama, Saki ; Abe, Yoshito ; Tani, Junya ; Urabe, Masashi ; Sato, Kenji ; Aramaki, Takahiko ; Katayama, Tsutomu ; Ueda, Tadashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f3220-b63a00d85a24281862ec023c66be2d84556bbeedcf2f8e86091ba695b94b12493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>adenosinetriphosphatase</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>calorimetry</topic><topic>Deoxyribonucleic acid</topic><topic>dissociation</topic><topic>DNA</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DnaT</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>histidine</topic><topic>Klebsiella pneumoniae</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>NMR spectroscopy</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>PriB</topic><topic>primosome</topic><topic>Protein Multimerization</topic><topic>protein structure</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>proteolysis</topic><topic>replication restart</topic><topic>single-stranded DNA</topic><topic>titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiyama, Saki</creatorcontrib><creatorcontrib>Abe, Yoshito</creatorcontrib><creatorcontrib>Tani, Junya</creatorcontrib><creatorcontrib>Urabe, Masashi</creatorcontrib><creatorcontrib>Sato, Kenji</creatorcontrib><creatorcontrib>Aramaki, Takahiko</creatorcontrib><creatorcontrib>Katayama, Tsutomu</creatorcontrib><creatorcontrib>Ueda, Tadashi</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiyama, Saki</au><au>Abe, Yoshito</au><au>Tani, Junya</au><au>Urabe, Masashi</au><au>Sato, Kenji</au><au>Aramaki, Takahiko</au><au>Katayama, Tsutomu</au><au>Ueda, Tadashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and mechanism of the primosome protein DnaT– functional structures for homotrimerization, dissociation of ssDNA from the PriB·ssDNA complex, and formation of the DnaT·ssDNA complex</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2014-12</date><risdate>2014</risdate><volume>281</volume><issue>23</issue><spage>5356</spage><epage>5370</epage><pages>5356-5370</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>In Escherichia coli, the primosome plays an essential role in replication restart after dissociation of replisomes at the damaged replication fork. As well as PriA and PriB, DnaT, an ssDNA‐binding protein, is a key member of the primosome. In this study, limited proteolysis indicated that E. coli DnaT was composed of two domains, consistent with the results of recent studies using Klebsiella pneumonia DnaT. We also found that a specific 24‐residue region (Phe42–Asp66) in the N‐terminal domain (1–88) was crucial for DnaT trimerization. Moreover, we determined the structure of the DnaT C‐terminal domain (89–179) by NMR spectroscopy. This domain included three α‐helices and a long flexible C‐terminal tail, similar to the C‐terminal subdomain of the AAA+ ATPase family. The neighboring histidines, His136 and His137, at a position corresponding to the AAA+ sensor II motif, were suggested to form an ssDNA‐binding site. Furthermore, we found that the acidic linker between the two domains had an activity for dissociating ssDNA from the PriB·ssDNA complexes in a manner supported by the conserved acidic residues Asp70 and Glu76. Thus, these findings provide a novel structural basis for understanding the mechanism of DnaT in exposure of ssDNA and reloading of the replicative helicase at the stalled replication fork. DATABASE: The coordinates used for the ensemble of NMR structures have been deposited in the Protein Data Bank under accession code 2ru8. The NMR data have been deposited in the BioMagResBank (www.bmrb.wisc.edu) under accession number 11549. STRUCTURED DIGITAL ABSTRACT: DnaT and DnaT bind by nuclear magnetic resonance (View interaction) DnaT and PriB bind by isothermal titration calorimetry (View interaction) DnaT and DnaT bind by molecular sieving (View interaction)</abstract><cop>England</cop><pub>Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies</pub><pmid>25265331</pmid><doi>10.1111/febs.13080</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2014-12, Vol.281 (23), p.5356-5370
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_1628238583
source Wiley; Free Full-Text Journals in Chemistry
subjects adenosinetriphosphatase
Amino Acid Sequence
Binding Sites
calorimetry
Deoxyribonucleic acid
dissociation
DNA
DNA, Single-Stranded - chemistry
DNA-Binding Proteins - chemistry
DnaT
E coli
Escherichia coli
Escherichia coli - chemistry
Escherichia coli Proteins - chemistry
histidine
Klebsiella pneumoniae
Magnetic Resonance Spectroscopy
Molecular biology
Molecular Sequence Data
NMR spectroscopy
nuclear magnetic resonance spectroscopy
PriB
primosome
Protein Multimerization
protein structure
Protein Structure, Secondary
Protein Structure, Tertiary
Proteins
proteolysis
replication restart
single-stranded DNA
titration
title Structure and mechanism of the primosome protein DnaT– functional structures for homotrimerization, dissociation of ssDNA from the PriB·ssDNA complex, and formation of the DnaT·ssDNA complex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20mechanism%20of%20the%20primosome%20protein%20DnaT%E2%80%93%20functional%20structures%20for%20homotrimerization,%20dissociation%20of%20ssDNA%20from%20the%20PriB%C2%B7ssDNA%20complex,%20and%20formation%20of%20the%20DnaT%C2%B7ssDNA%20complex&rft.jtitle=The%20FEBS%20journal&rft.au=Fujiyama,%20Saki&rft.date=2014-12&rft.volume=281&rft.issue=23&rft.spage=5356&rft.epage=5370&rft.pages=5356-5370&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.13080&rft_dat=%3Cproquest_pubme%3E3506204821%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-f3220-b63a00d85a24281862ec023c66be2d84556bbeedcf2f8e86091ba695b94b12493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1627625900&rft_id=info:pmid/25265331&rfr_iscdi=true