Loading…

Classification of EEG-P300 Signals Extracted from Brain Activities in BCI Systems using v-SVM and BLDA Algorithms

In this paper, a linear predictive coding (LPC) model is used to improve classification accuracy, convergent speed to maximum accuracy, and maximum bitrates in brain computer interface (BCI) system based on extracting EEG-P300 signals. First, EEG signal is filtered in order to eliminate high frequen...

Full description

Saved in:
Bibliographic Details
Published in:Applied medical informatics 2014-04, Vol.34 (2), p.23-23
Main Authors: Momennezhad, Ali, Shamsi, Mousa, Ebrahimnezhad, Hossein, Saberkari, Hamidreza
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 23
container_issue 2
container_start_page 23
container_title Applied medical informatics
container_volume 34
creator Momennezhad, Ali
Shamsi, Mousa
Ebrahimnezhad, Hossein
Saberkari, Hamidreza
description In this paper, a linear predictive coding (LPC) model is used to improve classification accuracy, convergent speed to maximum accuracy, and maximum bitrates in brain computer interface (BCI) system based on extracting EEG-P300 signals. First, EEG signal is filtered in order to eliminate high frequency noise. Then, the parameters of filtered EEG signal are extracted using LPC model. Finally, the samples are reconstructed by LPC coefficients and two classifiers, a) Bayesian Linear discriminant analysis (BLDA), and b) the v-support vector machine (v-SVM) are applied in order to classify. The proposed algorithm performance is compared with fisher linear discriminant analysis (FLDA). Results show that the efficiency of our algorithm in improving classification accuracy and convergent speed to maximum accuracy are much better. As example at the proposed algorithms, respectively BLDA with LPC model and v-SVM with LPC model with8 electrode configuration for subject S1 the total classification accuracy is improved as 9.4% and 1.7%. And also, subject 7 at BLDA and v-SVM with LPC model algorithms (LPC+BLDA and LPC+ v-SVM) after block 11th converged to maximum accuracy but Fisher Linear Discriminant Analysis (FLDA) algorithm did not converge to maximum accuracy (with the same configuration). So, it can be used as a promising tool in designing BCI systems.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629344608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3455036281</sourcerecordid><originalsourceid>FETCH-LOGICAL-p618-5d2c53257540b34bf904e11205849b4bc04158e978e8f05015542fb576ed5da93</originalsourceid><addsrcrecordid>eNpdj11LwzAYhYMoOOb-Q8AbbwL5etvmsqt1DiYKG96OtE1mRttsTTr031vRK8_N4cDDA-cKzThNUpJmANdoxjiXBECJW7QI4UinCKU4VzN0LlodgrOu1tH5HnuLy3JF3gSleOsOvW4DLj_joOtoGmwH3-HloF2P8zq6i4vOBDytZbHG268QTRfwGFx_wBeyfX_Bum_wcvOY47w9-MHFjy7coRs7Wc3ir-do91TuimeyeV2ti3xDTgnLCDS8BsEhBUkrISurqDSMcQqZVJWsaioZZEalmcksBcoAJLcVpIlpoNFKzNHDr_Y0-PNoQtx3LtSmbXVv_Bj2LOFKSJnQbELv_6FHPw4_1yeKKk5pwlPxDfXSYlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609200627</pqid></control><display><type>article</type><title>Classification of EEG-P300 Signals Extracted from Brain Activities in BCI Systems using v-SVM and BLDA Algorithms</title><source>Publicly Available Content Database</source><creator>Momennezhad, Ali ; Shamsi, Mousa ; Ebrahimnezhad, Hossein ; Saberkari, Hamidreza</creator><creatorcontrib>Momennezhad, Ali ; Shamsi, Mousa ; Ebrahimnezhad, Hossein ; Saberkari, Hamidreza</creatorcontrib><description>In this paper, a linear predictive coding (LPC) model is used to improve classification accuracy, convergent speed to maximum accuracy, and maximum bitrates in brain computer interface (BCI) system based on extracting EEG-P300 signals. First, EEG signal is filtered in order to eliminate high frequency noise. Then, the parameters of filtered EEG signal are extracted using LPC model. Finally, the samples are reconstructed by LPC coefficients and two classifiers, a) Bayesian Linear discriminant analysis (BLDA), and b) the v-support vector machine (v-SVM) are applied in order to classify. The proposed algorithm performance is compared with fisher linear discriminant analysis (FLDA). Results show that the efficiency of our algorithm in improving classification accuracy and convergent speed to maximum accuracy are much better. As example at the proposed algorithms, respectively BLDA with LPC model and v-SVM with LPC model with8 electrode configuration for subject S1 the total classification accuracy is improved as 9.4% and 1.7%. And also, subject 7 at BLDA and v-SVM with LPC model algorithms (LPC+BLDA and LPC+ v-SVM) after block 11th converged to maximum accuracy but Fisher Linear Discriminant Analysis (FLDA) algorithm did not converge to maximum accuracy (with the same configuration). So, it can be used as a promising tool in designing BCI systems.</description><identifier>ISSN: 1224-5593</identifier><identifier>EISSN: 2067-7855</identifier><language>eng</language><publisher>Cluj-Napoca: SRIMA Publishing House</publisher><subject>Accuracy ; Algorithms ; Brain ; Classification ; Discriminant analysis ; Electroencephalography ; Human-computer interface ; Mathematical models</subject><ispartof>Applied medical informatics, 2014-04, Vol.34 (2), p.23-23</ispartof><rights>Copyright SRIMA Publishing House 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1609200627/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1609200627?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,36989,36990,44566,74869</link.rule.ids></links><search><creatorcontrib>Momennezhad, Ali</creatorcontrib><creatorcontrib>Shamsi, Mousa</creatorcontrib><creatorcontrib>Ebrahimnezhad, Hossein</creatorcontrib><creatorcontrib>Saberkari, Hamidreza</creatorcontrib><title>Classification of EEG-P300 Signals Extracted from Brain Activities in BCI Systems using v-SVM and BLDA Algorithms</title><title>Applied medical informatics</title><description>In this paper, a linear predictive coding (LPC) model is used to improve classification accuracy, convergent speed to maximum accuracy, and maximum bitrates in brain computer interface (BCI) system based on extracting EEG-P300 signals. First, EEG signal is filtered in order to eliminate high frequency noise. Then, the parameters of filtered EEG signal are extracted using LPC model. Finally, the samples are reconstructed by LPC coefficients and two classifiers, a) Bayesian Linear discriminant analysis (BLDA), and b) the v-support vector machine (v-SVM) are applied in order to classify. The proposed algorithm performance is compared with fisher linear discriminant analysis (FLDA). Results show that the efficiency of our algorithm in improving classification accuracy and convergent speed to maximum accuracy are much better. As example at the proposed algorithms, respectively BLDA with LPC model and v-SVM with LPC model with8 electrode configuration for subject S1 the total classification accuracy is improved as 9.4% and 1.7%. And also, subject 7 at BLDA and v-SVM with LPC model algorithms (LPC+BLDA and LPC+ v-SVM) after block 11th converged to maximum accuracy but Fisher Linear Discriminant Analysis (FLDA) algorithm did not converge to maximum accuracy (with the same configuration). So, it can be used as a promising tool in designing BCI systems.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Classification</subject><subject>Discriminant analysis</subject><subject>Electroencephalography</subject><subject>Human-computer interface</subject><subject>Mathematical models</subject><issn>1224-5593</issn><issn>2067-7855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdj11LwzAYhYMoOOb-Q8AbbwL5etvmsqt1DiYKG96OtE1mRttsTTr031vRK8_N4cDDA-cKzThNUpJmANdoxjiXBECJW7QI4UinCKU4VzN0LlodgrOu1tH5HnuLy3JF3gSleOsOvW4DLj_joOtoGmwH3-HloF2P8zq6i4vOBDytZbHG268QTRfwGFx_wBeyfX_Bum_wcvOY47w9-MHFjy7coRs7Wc3ir-do91TuimeyeV2ti3xDTgnLCDS8BsEhBUkrISurqDSMcQqZVJWsaioZZEalmcksBcoAJLcVpIlpoNFKzNHDr_Y0-PNoQtx3LtSmbXVv_Bj2LOFKSJnQbELv_6FHPw4_1yeKKk5pwlPxDfXSYlU</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Momennezhad, Ali</creator><creator>Shamsi, Mousa</creator><creator>Ebrahimnezhad, Hossein</creator><creator>Saberkari, Hamidreza</creator><general>SRIMA Publishing House</general><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20140401</creationdate><title>Classification of EEG-P300 Signals Extracted from Brain Activities in BCI Systems using v-SVM and BLDA Algorithms</title><author>Momennezhad, Ali ; Shamsi, Mousa ; Ebrahimnezhad, Hossein ; Saberkari, Hamidreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p618-5d2c53257540b34bf904e11205849b4bc04158e978e8f05015542fb576ed5da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Classification</topic><topic>Discriminant analysis</topic><topic>Electroencephalography</topic><topic>Human-computer interface</topic><topic>Mathematical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Momennezhad, Ali</creatorcontrib><creatorcontrib>Shamsi, Mousa</creatorcontrib><creatorcontrib>Ebrahimnezhad, Hossein</creatorcontrib><creatorcontrib>Saberkari, Hamidreza</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Applied medical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Momennezhad, Ali</au><au>Shamsi, Mousa</au><au>Ebrahimnezhad, Hossein</au><au>Saberkari, Hamidreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of EEG-P300 Signals Extracted from Brain Activities in BCI Systems using v-SVM and BLDA Algorithms</atitle><jtitle>Applied medical informatics</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>34</volume><issue>2</issue><spage>23</spage><epage>23</epage><pages>23-23</pages><issn>1224-5593</issn><eissn>2067-7855</eissn><abstract>In this paper, a linear predictive coding (LPC) model is used to improve classification accuracy, convergent speed to maximum accuracy, and maximum bitrates in brain computer interface (BCI) system based on extracting EEG-P300 signals. First, EEG signal is filtered in order to eliminate high frequency noise. Then, the parameters of filtered EEG signal are extracted using LPC model. Finally, the samples are reconstructed by LPC coefficients and two classifiers, a) Bayesian Linear discriminant analysis (BLDA), and b) the v-support vector machine (v-SVM) are applied in order to classify. The proposed algorithm performance is compared with fisher linear discriminant analysis (FLDA). Results show that the efficiency of our algorithm in improving classification accuracy and convergent speed to maximum accuracy are much better. As example at the proposed algorithms, respectively BLDA with LPC model and v-SVM with LPC model with8 electrode configuration for subject S1 the total classification accuracy is improved as 9.4% and 1.7%. And also, subject 7 at BLDA and v-SVM with LPC model algorithms (LPC+BLDA and LPC+ v-SVM) after block 11th converged to maximum accuracy but Fisher Linear Discriminant Analysis (FLDA) algorithm did not converge to maximum accuracy (with the same configuration). So, it can be used as a promising tool in designing BCI systems.</abstract><cop>Cluj-Napoca</cop><pub>SRIMA Publishing House</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1224-5593
ispartof Applied medical informatics, 2014-04, Vol.34 (2), p.23-23
issn 1224-5593
2067-7855
language eng
recordid cdi_proquest_miscellaneous_1629344608
source Publicly Available Content Database
subjects Accuracy
Algorithms
Brain
Classification
Discriminant analysis
Electroencephalography
Human-computer interface
Mathematical models
title Classification of EEG-P300 Signals Extracted from Brain Activities in BCI Systems using v-SVM and BLDA Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20EEG-P300%20Signals%20Extracted%20from%20Brain%20Activities%20in%20BCI%20Systems%20using%20v-SVM%20and%20BLDA%20Algorithms&rft.jtitle=Applied%20medical%20informatics&rft.au=Momennezhad,%20Ali&rft.date=2014-04-01&rft.volume=34&rft.issue=2&rft.spage=23&rft.epage=23&rft.pages=23-23&rft.issn=1224-5593&rft.eissn=2067-7855&rft_id=info:doi/&rft_dat=%3Cproquest%3E3455036281%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p618-5d2c53257540b34bf904e11205849b4bc04158e978e8f05015542fb576ed5da93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1609200627&rft_id=info:pmid/&rfr_iscdi=true