Loading…
Divergence-based tests of homogeneity for spatial data
The problem of testing homogeneity in contingency tables when the data are spatially correlated is considered. We derive statistics defined as divergences between unrestricted and restricted estimated joint cell probabilities and we show that they are asymptotically distributed as linear combination...
Saved in:
Published in: | Statistical papers (Berlin, Germany) Germany), 2014-11, Vol.55 (4), p.1059-1077 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83 |
container_end_page | 1077 |
container_issue | 4 |
container_start_page | 1059 |
container_title | Statistical papers (Berlin, Germany) |
container_volume | 55 |
creator | Hobza, Tomáš Morales, Domingo Pardo, Leandro |
description | The problem of testing homogeneity in contingency tables when the data are spatially correlated is considered. We derive statistics defined as divergences between unrestricted and restricted estimated joint cell probabilities and we show that they are asymptotically distributed as linear combinations of chi-square random variables under the null hypothesis of homogeneity. Monte Carlo simulation experiments are carried out to investigate the behavior of the new divergence test statistics and to make comparisons with the statistics that do not take into account the spatial correlation. We show that some of the introduced divergence test statistics have a significantly better behavior than the classical chi-square test for the problem under consideration when we compare them on the basis of the simulated sizes and powers. |
doi_str_mv | 10.1007/s00362-013-0554-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629345296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629345296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcFN26ieTRpspTxCQNudB3S9Gbs0GnGpBXm35tSFyK4ulzud849HIQuKbmhhFS3iRAuGSaUYyJEieURWlCZN11pdYwWRHOGBWHyFJ2ltCWEKqXIAsn79gviBnoHuLYJmmKANKQi-OIj7EI-QDscCh9ikfZ2aG1XNHaw5-jE2y7Bxc9covfHh7fVM16_Pr2s7tbYlYINWMjKam4rrXkjvaqqqmxqBRQkNEwJDc7WjpWszOl97Z3j4LUDNx2UbxRfouvZdx_D55iTmV2bHHSd7SGMyVDJNM-vtMzo1R90G8bY53SZIlQwqkqdKTpTLoaUInizj-3OxoOhxExNmrlJk5s0U5NmcmazJmW230D85fyv6Buw0nWa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1601521849</pqid></control><display><type>article</type><title>Divergence-based tests of homogeneity for spatial data</title><source>Business Source Ultimate</source><source>EconLit with Full Text</source><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Hobza, Tomáš ; Morales, Domingo ; Pardo, Leandro</creator><creatorcontrib>Hobza, Tomáš ; Morales, Domingo ; Pardo, Leandro</creatorcontrib><description>The problem of testing homogeneity in contingency tables when the data are spatially correlated is considered. We derive statistics defined as divergences between unrestricted and restricted estimated joint cell probabilities and we show that they are asymptotically distributed as linear combinations of chi-square random variables under the null hypothesis of homogeneity. Monte Carlo simulation experiments are carried out to investigate the behavior of the new divergence test statistics and to make comparisons with the statistics that do not take into account the spatial correlation. We show that some of the introduced divergence test statistics have a significantly better behavior than the classical chi-square test for the problem under consideration when we compare them on the basis of the simulated sizes and powers.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-013-0554-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Chi-square test ; Computer simulation ; Contingency tables ; Correlation ; Divergence ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Homogeneity ; Hypotheses ; Hypothesis testing ; Information theory ; Insurance ; Management ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Maximum likelihood method ; Monte Carlo simulation ; Null hypothesis ; Operations research ; Operations Research/Decision Theory ; Probability ; Probability Theory and Stochastic Processes ; Random variables ; Regular Article ; Spatial data ; Statistical tests ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Statistical papers (Berlin, Germany), 2014-11, Vol.55 (4), p.1059-1077</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83</citedby><cites>FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1601521849/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1601521849?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362,74666</link.rule.ids></links><search><creatorcontrib>Hobza, Tomáš</creatorcontrib><creatorcontrib>Morales, Domingo</creatorcontrib><creatorcontrib>Pardo, Leandro</creatorcontrib><title>Divergence-based tests of homogeneity for spatial data</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>The problem of testing homogeneity in contingency tables when the data are spatially correlated is considered. We derive statistics defined as divergences between unrestricted and restricted estimated joint cell probabilities and we show that they are asymptotically distributed as linear combinations of chi-square random variables under the null hypothesis of homogeneity. Monte Carlo simulation experiments are carried out to investigate the behavior of the new divergence test statistics and to make comparisons with the statistics that do not take into account the spatial correlation. We show that some of the introduced divergence test statistics have a significantly better behavior than the classical chi-square test for the problem under consideration when we compare them on the basis of the simulated sizes and powers.</description><subject>Asymptotic properties</subject><subject>Chi-square test</subject><subject>Computer simulation</subject><subject>Contingency tables</subject><subject>Correlation</subject><subject>Divergence</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Homogeneity</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Information theory</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood method</subject><subject>Monte Carlo simulation</subject><subject>Null hypothesis</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><subject>Regular Article</subject><subject>Spatial data</subject><subject>Statistical tests</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcFN26ieTRpspTxCQNudB3S9Gbs0GnGpBXm35tSFyK4ulzud849HIQuKbmhhFS3iRAuGSaUYyJEieURWlCZN11pdYwWRHOGBWHyFJ2ltCWEKqXIAsn79gviBnoHuLYJmmKANKQi-OIj7EI-QDscCh9ikfZ2aG1XNHaw5-jE2y7Bxc9covfHh7fVM16_Pr2s7tbYlYINWMjKam4rrXkjvaqqqmxqBRQkNEwJDc7WjpWszOl97Z3j4LUDNx2UbxRfouvZdx_D55iTmV2bHHSd7SGMyVDJNM-vtMzo1R90G8bY53SZIlQwqkqdKTpTLoaUInizj-3OxoOhxExNmrlJk5s0U5NmcmazJmW230D85fyv6Buw0nWa</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Hobza, Tomáš</creator><creator>Morales, Domingo</creator><creator>Pardo, Leandro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>H8D</scope></search><sort><creationdate>20141101</creationdate><title>Divergence-based tests of homogeneity for spatial data</title><author>Hobza, Tomáš ; Morales, Domingo ; Pardo, Leandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Chi-square test</topic><topic>Computer simulation</topic><topic>Contingency tables</topic><topic>Correlation</topic><topic>Divergence</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Homogeneity</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Information theory</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood method</topic><topic>Monte Carlo simulation</topic><topic>Null hypothesis</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><topic>Regular Article</topic><topic>Spatial data</topic><topic>Statistical tests</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hobza, Tomáš</creatorcontrib><creatorcontrib>Morales, Domingo</creatorcontrib><creatorcontrib>Pardo, Leandro</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Aerospace Database</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hobza, Tomáš</au><au>Morales, Domingo</au><au>Pardo, Leandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence-based tests of homogeneity for spatial data</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>55</volume><issue>4</issue><spage>1059</spage><epage>1077</epage><pages>1059-1077</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>The problem of testing homogeneity in contingency tables when the data are spatially correlated is considered. We derive statistics defined as divergences between unrestricted and restricted estimated joint cell probabilities and we show that they are asymptotically distributed as linear combinations of chi-square random variables under the null hypothesis of homogeneity. Monte Carlo simulation experiments are carried out to investigate the behavior of the new divergence test statistics and to make comparisons with the statistics that do not take into account the spatial correlation. We show that some of the introduced divergence test statistics have a significantly better behavior than the classical chi-square test for the problem under consideration when we compare them on the basis of the simulated sizes and powers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-013-0554-6</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-5026 |
ispartof | Statistical papers (Berlin, Germany), 2014-11, Vol.55 (4), p.1059-1077 |
issn | 0932-5026 1613-9798 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629345296 |
source | Business Source Ultimate; EconLit with Full Text; ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Asymptotic properties Chi-square test Computer simulation Contingency tables Correlation Divergence Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Homogeneity Hypotheses Hypothesis testing Information theory Insurance Management Mathematical models Mathematics Mathematics and Statistics Maximum likelihood method Monte Carlo simulation Null hypothesis Operations research Operations Research/Decision Theory Probability Probability Theory and Stochastic Processes Random variables Regular Article Spatial data Statistical tests Statistics Statistics for Business Studies |
title | Divergence-based tests of homogeneity for spatial data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence-based%20tests%20of%20homogeneity%20for%20spatial%20data&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Hobza,%20Tom%C3%A1%C5%A1&rft.date=2014-11-01&rft.volume=55&rft.issue=4&rft.spage=1059&rft.epage=1077&rft.pages=1059-1077&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-013-0554-6&rft_dat=%3Cproquest_cross%3E1629345296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1601521849&rft_id=info:pmid/&rfr_iscdi=true |