Loading…

Divergence-based tests of homogeneity for spatial data

The problem of testing homogeneity in contingency tables when the data are spatially correlated is considered. We derive statistics defined as divergences between unrestricted and restricted estimated joint cell probabilities and we show that they are asymptotically distributed as linear combination...

Full description

Saved in:
Bibliographic Details
Published in:Statistical papers (Berlin, Germany) Germany), 2014-11, Vol.55 (4), p.1059-1077
Main Authors: Hobza, Tomáš, Morales, Domingo, Pardo, Leandro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83
cites cdi_FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83
container_end_page 1077
container_issue 4
container_start_page 1059
container_title Statistical papers (Berlin, Germany)
container_volume 55
creator Hobza, Tomáš
Morales, Domingo
Pardo, Leandro
description The problem of testing homogeneity in contingency tables when the data are spatially correlated is considered. We derive statistics defined as divergences between unrestricted and restricted estimated joint cell probabilities and we show that they are asymptotically distributed as linear combinations of chi-square random variables under the null hypothesis of homogeneity. Monte Carlo simulation experiments are carried out to investigate the behavior of the new divergence test statistics and to make comparisons with the statistics that do not take into account the spatial correlation. We show that some of the introduced divergence test statistics have a significantly better behavior than the classical chi-square test for the problem under consideration when we compare them on the basis of the simulated sizes and powers.
doi_str_mv 10.1007/s00362-013-0554-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629345296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629345296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcFN26ieTRpspTxCQNudB3S9Gbs0GnGpBXm35tSFyK4ulzud849HIQuKbmhhFS3iRAuGSaUYyJEieURWlCZN11pdYwWRHOGBWHyFJ2ltCWEKqXIAsn79gviBnoHuLYJmmKANKQi-OIj7EI-QDscCh9ikfZ2aG1XNHaw5-jE2y7Bxc9covfHh7fVM16_Pr2s7tbYlYINWMjKam4rrXkjvaqqqmxqBRQkNEwJDc7WjpWszOl97Z3j4LUDNx2UbxRfouvZdx_D55iTmV2bHHSd7SGMyVDJNM-vtMzo1R90G8bY53SZIlQwqkqdKTpTLoaUInizj-3OxoOhxExNmrlJk5s0U5NmcmazJmW230D85fyv6Buw0nWa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1601521849</pqid></control><display><type>article</type><title>Divergence-based tests of homogeneity for spatial data</title><source>Business Source Ultimate</source><source>EconLit with Full Text</source><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Hobza, Tomáš ; Morales, Domingo ; Pardo, Leandro</creator><creatorcontrib>Hobza, Tomáš ; Morales, Domingo ; Pardo, Leandro</creatorcontrib><description>The problem of testing homogeneity in contingency tables when the data are spatially correlated is considered. We derive statistics defined as divergences between unrestricted and restricted estimated joint cell probabilities and we show that they are asymptotically distributed as linear combinations of chi-square random variables under the null hypothesis of homogeneity. Monte Carlo simulation experiments are carried out to investigate the behavior of the new divergence test statistics and to make comparisons with the statistics that do not take into account the spatial correlation. We show that some of the introduced divergence test statistics have a significantly better behavior than the classical chi-square test for the problem under consideration when we compare them on the basis of the simulated sizes and powers.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-013-0554-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Chi-square test ; Computer simulation ; Contingency tables ; Correlation ; Divergence ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Homogeneity ; Hypotheses ; Hypothesis testing ; Information theory ; Insurance ; Management ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Maximum likelihood method ; Monte Carlo simulation ; Null hypothesis ; Operations research ; Operations Research/Decision Theory ; Probability ; Probability Theory and Stochastic Processes ; Random variables ; Regular Article ; Spatial data ; Statistical tests ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Statistical papers (Berlin, Germany), 2014-11, Vol.55 (4), p.1059-1077</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83</citedby><cites>FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1601521849/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1601521849?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362,74666</link.rule.ids></links><search><creatorcontrib>Hobza, Tomáš</creatorcontrib><creatorcontrib>Morales, Domingo</creatorcontrib><creatorcontrib>Pardo, Leandro</creatorcontrib><title>Divergence-based tests of homogeneity for spatial data</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>The problem of testing homogeneity in contingency tables when the data are spatially correlated is considered. We derive statistics defined as divergences between unrestricted and restricted estimated joint cell probabilities and we show that they are asymptotically distributed as linear combinations of chi-square random variables under the null hypothesis of homogeneity. Monte Carlo simulation experiments are carried out to investigate the behavior of the new divergence test statistics and to make comparisons with the statistics that do not take into account the spatial correlation. We show that some of the introduced divergence test statistics have a significantly better behavior than the classical chi-square test for the problem under consideration when we compare them on the basis of the simulated sizes and powers.</description><subject>Asymptotic properties</subject><subject>Chi-square test</subject><subject>Computer simulation</subject><subject>Contingency tables</subject><subject>Correlation</subject><subject>Divergence</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Homogeneity</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Information theory</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood method</subject><subject>Monte Carlo simulation</subject><subject>Null hypothesis</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><subject>Regular Article</subject><subject>Spatial data</subject><subject>Statistical tests</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcFN26ieTRpspTxCQNudB3S9Gbs0GnGpBXm35tSFyK4ulzud849HIQuKbmhhFS3iRAuGSaUYyJEieURWlCZN11pdYwWRHOGBWHyFJ2ltCWEKqXIAsn79gviBnoHuLYJmmKANKQi-OIj7EI-QDscCh9ikfZ2aG1XNHaw5-jE2y7Bxc9covfHh7fVM16_Pr2s7tbYlYINWMjKam4rrXkjvaqqqmxqBRQkNEwJDc7WjpWszOl97Z3j4LUDNx2UbxRfouvZdx_D55iTmV2bHHSd7SGMyVDJNM-vtMzo1R90G8bY53SZIlQwqkqdKTpTLoaUInizj-3OxoOhxExNmrlJk5s0U5NmcmazJmW230D85fyv6Buw0nWa</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Hobza, Tomáš</creator><creator>Morales, Domingo</creator><creator>Pardo, Leandro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>H8D</scope></search><sort><creationdate>20141101</creationdate><title>Divergence-based tests of homogeneity for spatial data</title><author>Hobza, Tomáš ; Morales, Domingo ; Pardo, Leandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Chi-square test</topic><topic>Computer simulation</topic><topic>Contingency tables</topic><topic>Correlation</topic><topic>Divergence</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Homogeneity</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Information theory</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood method</topic><topic>Monte Carlo simulation</topic><topic>Null hypothesis</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><topic>Regular Article</topic><topic>Spatial data</topic><topic>Statistical tests</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hobza, Tomáš</creatorcontrib><creatorcontrib>Morales, Domingo</creatorcontrib><creatorcontrib>Pardo, Leandro</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Aerospace Database</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hobza, Tomáš</au><au>Morales, Domingo</au><au>Pardo, Leandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence-based tests of homogeneity for spatial data</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>55</volume><issue>4</issue><spage>1059</spage><epage>1077</epage><pages>1059-1077</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>The problem of testing homogeneity in contingency tables when the data are spatially correlated is considered. We derive statistics defined as divergences between unrestricted and restricted estimated joint cell probabilities and we show that they are asymptotically distributed as linear combinations of chi-square random variables under the null hypothesis of homogeneity. Monte Carlo simulation experiments are carried out to investigate the behavior of the new divergence test statistics and to make comparisons with the statistics that do not take into account the spatial correlation. We show that some of the introduced divergence test statistics have a significantly better behavior than the classical chi-square test for the problem under consideration when we compare them on the basis of the simulated sizes and powers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-013-0554-6</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2014-11, Vol.55 (4), p.1059-1077
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_miscellaneous_1629345296
source Business Source Ultimate; EconLit with Full Text; ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Asymptotic properties
Chi-square test
Computer simulation
Contingency tables
Correlation
Divergence
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Homogeneity
Hypotheses
Hypothesis testing
Information theory
Insurance
Management
Mathematical models
Mathematics
Mathematics and Statistics
Maximum likelihood method
Monte Carlo simulation
Null hypothesis
Operations research
Operations Research/Decision Theory
Probability
Probability Theory and Stochastic Processes
Random variables
Regular Article
Spatial data
Statistical tests
Statistics
Statistics for Business
Studies
title Divergence-based tests of homogeneity for spatial data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence-based%20tests%20of%20homogeneity%20for%20spatial%20data&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Hobza,%20Tom%C3%A1%C5%A1&rft.date=2014-11-01&rft.volume=55&rft.issue=4&rft.spage=1059&rft.epage=1077&rft.pages=1059-1077&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-013-0554-6&rft_dat=%3Cproquest_cross%3E1629345296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-567a93a7993d6f87774db8e1e6ed2859ecabc2424003fbfcc3ef9cec9eca8fd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1601521849&rft_id=info:pmid/&rfr_iscdi=true