Loading…
Effects of Jatropha biodiesel on the performance, emissions, and combustion of a converted common-rail diesel engine
An experimental investigation into the effects of Jatropha biodiesel fuels on the engine performance, emissions, and combustion characteristics of a single-cylinder high-pressure common-rail diesel engine was performed under six different load operations (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 MPa). The t...
Saved in:
Published in: | RSC advances 2014-01, Vol.4 (92), p.50739-50751 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c264t-49d568cf42b0693a8a7d332a7688c6dc20cc1b9906e5f64926eae140640cce953 |
---|---|
cites | cdi_FETCH-LOGICAL-c264t-49d568cf42b0693a8a7d332a7688c6dc20cc1b9906e5f64926eae140640cce953 |
container_end_page | 50751 |
container_issue | 92 |
container_start_page | 50739 |
container_title | RSC advances |
container_volume | 4 |
creator | Teoh, Y. H. Masjuki, H. H. Kalam, M. A. Amalina, M. A. How, H. G. |
description | An experimental investigation into the effects of Jatropha biodiesel fuels on the engine performance, emissions, and combustion characteristics of a single-cylinder high-pressure common-rail diesel engine was performed under six different load operations (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 MPa). The test fuels included a conventional diesel fuel and three different blends of Jatropha biodiesel fuel (JB10, JB30, and JB50). The results revealed that the biodiesel blended fuels had a significant influence on the brake specific fuel consumption (BSFC) at all of the engine load conditions examined. In general, the use of Jatropha biodiesel blends resulted in a reduction in brake specific nitrogen oxide (BSNO sub(x)), brake specific carbon monoxide (BSCO), and smoke emissions, regardless of the load conditions. A large reduction of 20.2% in BSNO sub(x) emissions and 69.5% in smoke opacity were found for the engine when it was fuelled with the biodiesel blends. In terms of the engine combustion characteristics, a slightly shorter ignition delay (ID) and faster combustion duration were found to occur with the use of biodiesel blends under all loading operations. It was revealed that the peak apparent heat release rate (AHRR) for biodiesel blends is lower during low load operation; the AHRR was found to be comparable to that of baseline diesel during high-load operation. Finally, the vibration results demonstrated that the largest reduction, 11.3%, in the root mean square (RMS) of acceleration in comparison with the baseline diesel was obtained with JB50 at an engine load of 0.5 MPa. |
doi_str_mv | 10.1039/C4RA08464K |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629350998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629350998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-49d568cf42b0693a8a7d332a7688c6dc20cc1b9906e5f64926eae140640cce953</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJg0V78BTmKdDXJZtPNsZT6WRBEz0s2-2Iju8mapIL_3tQW9F3emzfDMAxCF5RcU1LKmyV_WZCaC_50hCaMcFEwIuTxv_sUTWP8IHlERZmgE5RWxoBOEXuDH1UKftwo3FrfWYjQY-9w2gAeIRgfBuU0zDAMNkbrXZxh5Tqs_dBuY8qPnYfK2H1BSPDLDN4VQdkeH_zAvVsH5-jEqD7C9LDP0Nvt6nV5X6yf7x6Wi3WhmeCp4LKrRK0NZ23OXqpazbuyZGou6lqLTjOiNW2lJAIqI7hkAhRQTgTPBMiqPEOXe98x-M8txNTk6Br6Xjnw29hQwWRZESnrLL3aS3XwMQYwzRjsoMJ3Q0mza7f5a7f8AQn_bQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629350998</pqid></control><display><type>article</type><title>Effects of Jatropha biodiesel on the performance, emissions, and combustion of a converted common-rail diesel engine</title><source>Royal Society of Chemistry</source><creator>Teoh, Y. H. ; Masjuki, H. H. ; Kalam, M. A. ; Amalina, M. A. ; How, H. G.</creator><creatorcontrib>Teoh, Y. H. ; Masjuki, H. H. ; Kalam, M. A. ; Amalina, M. A. ; How, H. G.</creatorcontrib><description>An experimental investigation into the effects of Jatropha biodiesel fuels on the engine performance, emissions, and combustion characteristics of a single-cylinder high-pressure common-rail diesel engine was performed under six different load operations (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 MPa). The test fuels included a conventional diesel fuel and three different blends of Jatropha biodiesel fuel (JB10, JB30, and JB50). The results revealed that the biodiesel blended fuels had a significant influence on the brake specific fuel consumption (BSFC) at all of the engine load conditions examined. In general, the use of Jatropha biodiesel blends resulted in a reduction in brake specific nitrogen oxide (BSNO sub(x)), brake specific carbon monoxide (BSCO), and smoke emissions, regardless of the load conditions. A large reduction of 20.2% in BSNO sub(x) emissions and 69.5% in smoke opacity were found for the engine when it was fuelled with the biodiesel blends. In terms of the engine combustion characteristics, a slightly shorter ignition delay (ID) and faster combustion duration were found to occur with the use of biodiesel blends under all loading operations. It was revealed that the peak apparent heat release rate (AHRR) for biodiesel blends is lower during low load operation; the AHRR was found to be comparable to that of baseline diesel during high-load operation. Finally, the vibration results demonstrated that the largest reduction, 11.3%, in the root mean square (RMS) of acceleration in comparison with the baseline diesel was obtained with JB50 at an engine load of 0.5 MPa.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/C4RA08464K</identifier><language>eng</language><subject>Biodiesel ; Blends ; Brakes ; Combustion ; Diesel engines ; Fuels ; Polymer blends ; Reduction</subject><ispartof>RSC advances, 2014-01, Vol.4 (92), p.50739-50751</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-49d568cf42b0693a8a7d332a7688c6dc20cc1b9906e5f64926eae140640cce953</citedby><cites>FETCH-LOGICAL-c264t-49d568cf42b0693a8a7d332a7688c6dc20cc1b9906e5f64926eae140640cce953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Teoh, Y. H.</creatorcontrib><creatorcontrib>Masjuki, H. H.</creatorcontrib><creatorcontrib>Kalam, M. A.</creatorcontrib><creatorcontrib>Amalina, M. A.</creatorcontrib><creatorcontrib>How, H. G.</creatorcontrib><title>Effects of Jatropha biodiesel on the performance, emissions, and combustion of a converted common-rail diesel engine</title><title>RSC advances</title><description>An experimental investigation into the effects of Jatropha biodiesel fuels on the engine performance, emissions, and combustion characteristics of a single-cylinder high-pressure common-rail diesel engine was performed under six different load operations (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 MPa). The test fuels included a conventional diesel fuel and three different blends of Jatropha biodiesel fuel (JB10, JB30, and JB50). The results revealed that the biodiesel blended fuels had a significant influence on the brake specific fuel consumption (BSFC) at all of the engine load conditions examined. In general, the use of Jatropha biodiesel blends resulted in a reduction in brake specific nitrogen oxide (BSNO sub(x)), brake specific carbon monoxide (BSCO), and smoke emissions, regardless of the load conditions. A large reduction of 20.2% in BSNO sub(x) emissions and 69.5% in smoke opacity were found for the engine when it was fuelled with the biodiesel blends. In terms of the engine combustion characteristics, a slightly shorter ignition delay (ID) and faster combustion duration were found to occur with the use of biodiesel blends under all loading operations. It was revealed that the peak apparent heat release rate (AHRR) for biodiesel blends is lower during low load operation; the AHRR was found to be comparable to that of baseline diesel during high-load operation. Finally, the vibration results demonstrated that the largest reduction, 11.3%, in the root mean square (RMS) of acceleration in comparison with the baseline diesel was obtained with JB50 at an engine load of 0.5 MPa.</description><subject>Biodiesel</subject><subject>Blends</subject><subject>Brakes</subject><subject>Combustion</subject><subject>Diesel engines</subject><subject>Fuels</subject><subject>Polymer blends</subject><subject>Reduction</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNUE1LAzEUDKJg0V78BTmKdDXJZtPNsZT6WRBEz0s2-2Iju8mapIL_3tQW9F3emzfDMAxCF5RcU1LKmyV_WZCaC_50hCaMcFEwIuTxv_sUTWP8IHlERZmgE5RWxoBOEXuDH1UKftwo3FrfWYjQY-9w2gAeIRgfBuU0zDAMNkbrXZxh5Tqs_dBuY8qPnYfK2H1BSPDLDN4VQdkeH_zAvVsH5-jEqD7C9LDP0Nvt6nV5X6yf7x6Wi3WhmeCp4LKrRK0NZ23OXqpazbuyZGou6lqLTjOiNW2lJAIqI7hkAhRQTgTPBMiqPEOXe98x-M8txNTk6Br6Xjnw29hQwWRZESnrLL3aS3XwMQYwzRjsoMJ3Q0mza7f5a7f8AQn_bQ8</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Teoh, Y. H.</creator><creator>Masjuki, H. H.</creator><creator>Kalam, M. A.</creator><creator>Amalina, M. A.</creator><creator>How, H. G.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20140101</creationdate><title>Effects of Jatropha biodiesel on the performance, emissions, and combustion of a converted common-rail diesel engine</title><author>Teoh, Y. H. ; Masjuki, H. H. ; Kalam, M. A. ; Amalina, M. A. ; How, H. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-49d568cf42b0693a8a7d332a7688c6dc20cc1b9906e5f64926eae140640cce953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biodiesel</topic><topic>Blends</topic><topic>Brakes</topic><topic>Combustion</topic><topic>Diesel engines</topic><topic>Fuels</topic><topic>Polymer blends</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teoh, Y. H.</creatorcontrib><creatorcontrib>Masjuki, H. H.</creatorcontrib><creatorcontrib>Kalam, M. A.</creatorcontrib><creatorcontrib>Amalina, M. A.</creatorcontrib><creatorcontrib>How, H. G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teoh, Y. H.</au><au>Masjuki, H. H.</au><au>Kalam, M. A.</au><au>Amalina, M. A.</au><au>How, H. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Jatropha biodiesel on the performance, emissions, and combustion of a converted common-rail diesel engine</atitle><jtitle>RSC advances</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>4</volume><issue>92</issue><spage>50739</spage><epage>50751</epage><pages>50739-50751</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>An experimental investigation into the effects of Jatropha biodiesel fuels on the engine performance, emissions, and combustion characteristics of a single-cylinder high-pressure common-rail diesel engine was performed under six different load operations (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 MPa). The test fuels included a conventional diesel fuel and three different blends of Jatropha biodiesel fuel (JB10, JB30, and JB50). The results revealed that the biodiesel blended fuels had a significant influence on the brake specific fuel consumption (BSFC) at all of the engine load conditions examined. In general, the use of Jatropha biodiesel blends resulted in a reduction in brake specific nitrogen oxide (BSNO sub(x)), brake specific carbon monoxide (BSCO), and smoke emissions, regardless of the load conditions. A large reduction of 20.2% in BSNO sub(x) emissions and 69.5% in smoke opacity were found for the engine when it was fuelled with the biodiesel blends. In terms of the engine combustion characteristics, a slightly shorter ignition delay (ID) and faster combustion duration were found to occur with the use of biodiesel blends under all loading operations. It was revealed that the peak apparent heat release rate (AHRR) for biodiesel blends is lower during low load operation; the AHRR was found to be comparable to that of baseline diesel during high-load operation. Finally, the vibration results demonstrated that the largest reduction, 11.3%, in the root mean square (RMS) of acceleration in comparison with the baseline diesel was obtained with JB50 at an engine load of 0.5 MPa.</abstract><doi>10.1039/C4RA08464K</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2014-01, Vol.4 (92), p.50739-50751 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629350998 |
source | Royal Society of Chemistry |
subjects | Biodiesel Blends Brakes Combustion Diesel engines Fuels Polymer blends Reduction |
title | Effects of Jatropha biodiesel on the performance, emissions, and combustion of a converted common-rail diesel engine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Jatropha%20biodiesel%20on%20the%20performance,%20emissions,%20and%20combustion%20of%20a%20converted%20common-rail%20diesel%20engine&rft.jtitle=RSC%20advances&rft.au=Teoh,%20Y.%20H.&rft.date=2014-01-01&rft.volume=4&rft.issue=92&rft.spage=50739&rft.epage=50751&rft.pages=50739-50751&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/C4RA08464K&rft_dat=%3Cproquest_cross%3E1629350998%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-49d568cf42b0693a8a7d332a7688c6dc20cc1b9906e5f64926eae140640cce953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1629350998&rft_id=info:pmid/&rfr_iscdi=true |