Loading…
Size effects on magneto-optics in spherical quantum dots
The magneto-optical absorption in ‘spherical’ quantum dots ‘completely’ confined by a harmonic potential and exposed to an applied magnetic field in the symmetric gauge is investigated. This is done within the framework of Bohm–Pines’ random phase approximation (RPA) that enables us to derive and di...
Saved in:
Published in: | Electronics letters 2014-08, Vol.50 (18), p.1305-1307 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4725-5b80437faa7ee5691fbb44d8a2fc22081493457e30ebba9d19633a44af48ccf23 |
---|---|
cites | cdi_FETCH-LOGICAL-c4725-5b80437faa7ee5691fbb44d8a2fc22081493457e30ebba9d19633a44af48ccf23 |
container_end_page | 1307 |
container_issue | 18 |
container_start_page | 1305 |
container_title | Electronics letters |
container_volume | 50 |
creator | Kushwaha, M.S |
description | The magneto-optical absorption in ‘spherical’ quantum dots ‘completely’ confined by a harmonic potential and exposed to an applied magnetic field in the symmetric gauge is investigated. This is done within the framework of Bohm–Pines’ random phase approximation (RPA) that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. Intensifying the confinement or magnetic field and reducing the dot-size yields a blue-shift in the absorption peaks. However, the size effects are seen to be predominant in this role. The magnetic field tends to maximise the localisation of the particle, but leaves the peak position of the radial distribution intact. The intra-Landau level transitions are forbidden. |
doi_str_mv | 10.1049/el.2014.2060 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629353701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3462656491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4725-5b80437faa7ee5691fbb44d8a2fc22081493457e30ebba9d19633a44af48ccf23</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIyz8wcUVHBhx9w8-ljqMD6g4EIFdyHN3Gik09amRcZfb4YRX4ibZPOdw7kfIftAp0BFforVlFEQ4UnoFhkBlzTOAR62yYhS4LGEXOySifeuDBiIhAoYkezWvWGE1qLpfdTU0VI_1tg3cdP2zvjI1ZFvn7BzRlfRy6DrflhGi6b3e2TH6srj5OMfk_uL-d3sKi5uLq9nZ0VsRMpkLMuMCp5arVNEmeRgy1KIRaaZNYzRDETOhUyRUyxLnS8gTzjXQmgrMmMs42NyvOltu-ZlQN-rpfMGq0rX2AxeQcJyLnkaThyTg1_oczN0dVgXKGBSUgjsmJxsKNM13ndoVdu5pe5WCqham1RYqbVJtTYZ8KOPUu2DA9vp2jj_mWFZRtNwReDkhnt1Fa7-7VTzomDnFxRSKUPucJNz-G3vvPiGtwv7peEH9ufid6HkmWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612550129</pqid></control><display><type>article</type><title>Size effects on magneto-optics in spherical quantum dots</title><source>Wiley Online Library Open Access</source><creator>Kushwaha, M.S</creator><creatorcontrib>Kushwaha, M.S</creatorcontrib><description>The magneto-optical absorption in ‘spherical’ quantum dots ‘completely’ confined by a harmonic potential and exposed to an applied magnetic field in the symmetric gauge is investigated. This is done within the framework of Bohm–Pines’ random phase approximation (RPA) that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. Intensifying the confinement or magnetic field and reducing the dot-size yields a blue-shift in the absorption peaks. However, the size effects are seen to be predominant in this role. The magnetic field tends to maximise the localisation of the particle, but leaves the peak position of the radial distribution intact. The intra-Landau level transitions are forbidden.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2014.2060</identifier><identifier>CODEN: ELLEAK</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>applied magnetic field ; Approximation ; blue‐shift ; Bohm–Pines RPA ; Confinement ; Coulomb friction ; Coulomb interactions ; Cross-disciplinary physics: materials science; rheology ; Dyson equation ; Exact sciences and technology ; harmonic potential ; intraLandau level transitions ; Landau levels ; magnetic field ; Magnetic fields ; Magneto-optics ; magnetoabsorption ; magnetooptic property ; magnetooptical absorption ; Materials science ; Mathematical analysis ; Nanoscale materials and structures: fabrication and characterization ; Photonics ; Physics ; Quantum dots ; Radial distribution ; RPA calculations ; size effect ; size effects ; spectral line shift ; spherical quantum dots</subject><ispartof>Electronics letters, 2014-08, Vol.50 (18), p.1305-1307</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright The Institution of Engineering & Technology Aug 28, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4725-5b80437faa7ee5691fbb44d8a2fc22081493457e30ebba9d19633a44af48ccf23</citedby><cites>FETCH-LOGICAL-c4725-5b80437faa7ee5691fbb44d8a2fc22081493457e30ebba9d19633a44af48ccf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2014.2060$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2014.2060$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,9736,11543,27903,27904,46030,46454</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2014.2060$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28807814$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kushwaha, M.S</creatorcontrib><title>Size effects on magneto-optics in spherical quantum dots</title><title>Electronics letters</title><description>The magneto-optical absorption in ‘spherical’ quantum dots ‘completely’ confined by a harmonic potential and exposed to an applied magnetic field in the symmetric gauge is investigated. This is done within the framework of Bohm–Pines’ random phase approximation (RPA) that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. Intensifying the confinement or magnetic field and reducing the dot-size yields a blue-shift in the absorption peaks. However, the size effects are seen to be predominant in this role. The magnetic field tends to maximise the localisation of the particle, but leaves the peak position of the radial distribution intact. The intra-Landau level transitions are forbidden.</description><subject>applied magnetic field</subject><subject>Approximation</subject><subject>blue‐shift</subject><subject>Bohm–Pines RPA</subject><subject>Confinement</subject><subject>Coulomb friction</subject><subject>Coulomb interactions</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dyson equation</subject><subject>Exact sciences and technology</subject><subject>harmonic potential</subject><subject>intraLandau level transitions</subject><subject>Landau levels</subject><subject>magnetic field</subject><subject>Magnetic fields</subject><subject>Magneto-optics</subject><subject>magnetoabsorption</subject><subject>magnetooptic property</subject><subject>magnetooptical absorption</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Photonics</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Radial distribution</subject><subject>RPA calculations</subject><subject>size effect</subject><subject>size effects</subject><subject>spectral line shift</subject><subject>spherical quantum dots</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOIyz8wcUVHBhx9w8-ljqMD6g4EIFdyHN3Gik09amRcZfb4YRX4ibZPOdw7kfIftAp0BFforVlFEQ4UnoFhkBlzTOAR62yYhS4LGEXOySifeuDBiIhAoYkezWvWGE1qLpfdTU0VI_1tg3cdP2zvjI1ZFvn7BzRlfRy6DrflhGi6b3e2TH6srj5OMfk_uL-d3sKi5uLq9nZ0VsRMpkLMuMCp5arVNEmeRgy1KIRaaZNYzRDETOhUyRUyxLnS8gTzjXQmgrMmMs42NyvOltu-ZlQN-rpfMGq0rX2AxeQcJyLnkaThyTg1_oczN0dVgXKGBSUgjsmJxsKNM13ndoVdu5pe5WCqham1RYqbVJtTYZ8KOPUu2DA9vp2jj_mWFZRtNwReDkhnt1Fa7-7VTzomDnFxRSKUPucJNz-G3vvPiGtwv7peEH9ufid6HkmWE</recordid><startdate>20140828</startdate><enddate>20140828</enddate><creator>Kushwaha, M.S</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><general>John Wiley & Sons, Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20140828</creationdate><title>Size effects on magneto-optics in spherical quantum dots</title><author>Kushwaha, M.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4725-5b80437faa7ee5691fbb44d8a2fc22081493457e30ebba9d19633a44af48ccf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>applied magnetic field</topic><topic>Approximation</topic><topic>blue‐shift</topic><topic>Bohm–Pines RPA</topic><topic>Confinement</topic><topic>Coulomb friction</topic><topic>Coulomb interactions</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dyson equation</topic><topic>Exact sciences and technology</topic><topic>harmonic potential</topic><topic>intraLandau level transitions</topic><topic>Landau levels</topic><topic>magnetic field</topic><topic>Magnetic fields</topic><topic>Magneto-optics</topic><topic>magnetoabsorption</topic><topic>magnetooptic property</topic><topic>magnetooptical absorption</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Photonics</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Radial distribution</topic><topic>RPA calculations</topic><topic>size effect</topic><topic>size effects</topic><topic>spectral line shift</topic><topic>spherical quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kushwaha, M.S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kushwaha, M.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size effects on magneto-optics in spherical quantum dots</atitle><jtitle>Electronics letters</jtitle><date>2014-08-28</date><risdate>2014</risdate><volume>50</volume><issue>18</issue><spage>1305</spage><epage>1307</epage><pages>1305-1307</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><coden>ELLEAK</coden><abstract>The magneto-optical absorption in ‘spherical’ quantum dots ‘completely’ confined by a harmonic potential and exposed to an applied magnetic field in the symmetric gauge is investigated. This is done within the framework of Bohm–Pines’ random phase approximation (RPA) that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. Intensifying the confinement or magnetic field and reducing the dot-size yields a blue-shift in the absorption peaks. However, the size effects are seen to be predominant in this role. The magnetic field tends to maximise the localisation of the particle, but leaves the peak position of the radial distribution intact. The intra-Landau level transitions are forbidden.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2014.2060</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2014-08, Vol.50 (18), p.1305-1307 |
issn | 0013-5194 1350-911X 1350-911X |
language | eng |
recordid | cdi_proquest_miscellaneous_1629353701 |
source | Wiley Online Library Open Access |
subjects | applied magnetic field Approximation blue‐shift Bohm–Pines RPA Confinement Coulomb friction Coulomb interactions Cross-disciplinary physics: materials science rheology Dyson equation Exact sciences and technology harmonic potential intraLandau level transitions Landau levels magnetic field Magnetic fields Magneto-optics magnetoabsorption magnetooptic property magnetooptical absorption Materials science Mathematical analysis Nanoscale materials and structures: fabrication and characterization Photonics Physics Quantum dots Radial distribution RPA calculations size effect size effects spectral line shift spherical quantum dots |
title | Size effects on magneto-optics in spherical quantum dots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20effects%20on%20magneto-optics%20in%20spherical%20quantum%20dots&rft.jtitle=Electronics%20letters&rft.au=Kushwaha,%20M.S&rft.date=2014-08-28&rft.volume=50&rft.issue=18&rft.spage=1305&rft.epage=1307&rft.pages=1305-1307&rft.issn=0013-5194&rft.eissn=1350-911X&rft.coden=ELLEAK&rft_id=info:doi/10.1049/el.2014.2060&rft_dat=%3Cproquest_24P%3E3462656491%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4725-5b80437faa7ee5691fbb44d8a2fc22081493457e30ebba9d19633a44af48ccf23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1612550129&rft_id=info:pmid/&rfr_iscdi=true |