Loading…
Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine
Experimental protein structures provide spatial information at the atomic level. A further dimension, time, is supplemented by molecular dynamics. Since the pioneering work on the 58‐residue inhibitor of bovine pancreatic trypsin in the group of Martin Karplus in the seventies, molecular dynamics si...
Saved in:
Published in: | Israel journal of chemistry 2014-08, Vol.54 (8-9), p.1084-1092 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3 |
container_end_page | 1092 |
container_issue | 8-9 |
container_start_page | 1084 |
container_title | Israel journal of chemistry |
container_volume | 54 |
creator | Spiliotopoulos, Dimitrios Caflisch, Amedeo |
description | Experimental protein structures provide spatial information at the atomic level. A further dimension, time, is supplemented by molecular dynamics. Since the pioneering work on the 58‐residue inhibitor of bovine pancreatic trypsin in the group of Martin Karplus in the seventies, molecular dynamics simulations have shown that the intrinsic flexibility of proteins is essential for their function. Here, we review simulation studies of bromodomains. These protein modules are involved in the recognition of acetylated lysine side chains, a post‐translational modification frequently observed in histone tails. The molecular dynamics simulations have unmasked: (i) the large plasticity of the loops lining the acetyl‐lysine binding site (coupled to its self‐occlusion), and (ii) multiple binding modes of acetyl‐lysine. These simulation results suggest that recognition of histone tails by bromodomains is modulated by their intrinsic flexibility, and further corroborate the utility of molecular dynamics in understanding (macro)molecular recognition. |
doi_str_mv | 10.1002/ijch.201400009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629353769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3431904621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3</originalsourceid><addsrcrecordid>eNqFkUFv0zAYhi0EEmVw5WyJC5d0cVw78XHr2LrRDkRB42Y58ZfNxYmL7WzLj-A_49JtQlzwxXo_Pc-nT3oRekvyKcnz4tBsmptpkZNZnp54hiak4iJjFa-eo0kCSFaQWfUSvQphsyNyISbo18pZaAarPD4Ze9WZJuC16dIgGtcH7Fp87F3ntOuUSfkL3IKy-Nj02vTX2dpEwKcW7k1trIkjVr3Gq8FGs7XwSOGV0_BnVbwBfKni4NOKpbnewUcNxNFmyzGYHl6jF62yAd48_Afo2-mHr_NFtvx0dj4_WmbNrKhEpogCzWsGda2bmmtdMq4Y0S2hLQAVFHhNctaKlGDGONVNVdFW13VKpVL0AL3f791693OAEGVnQgPWqh7cECThhaCMllwk9N0_6MYNvk_XScI4EaykJUnUdE813oXgoZVbbzrlR0lyuWtH7tqRT-0kQeyFO2Nh_A8tzy_mi7_dbO-aEOH-yVX-h-TpGiavLs_kx8XJ-upzcr_T30Sfphs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561957371</pqid></control><display><type>article</type><title>Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine</title><source>Wiley</source><creator>Spiliotopoulos, Dimitrios ; Caflisch, Amedeo</creator><creatorcontrib>Spiliotopoulos, Dimitrios ; Caflisch, Amedeo</creatorcontrib><description>Experimental protein structures provide spatial information at the atomic level. A further dimension, time, is supplemented by molecular dynamics. Since the pioneering work on the 58‐residue inhibitor of bovine pancreatic trypsin in the group of Martin Karplus in the seventies, molecular dynamics simulations have shown that the intrinsic flexibility of proteins is essential for their function. Here, we review simulation studies of bromodomains. These protein modules are involved in the recognition of acetylated lysine side chains, a post‐translational modification frequently observed in histone tails. The molecular dynamics simulations have unmasked: (i) the large plasticity of the loops lining the acetyl‐lysine binding site (coupled to its self‐occlusion), and (ii) multiple binding modes of acetyl‐lysine. These simulation results suggest that recognition of histone tails by bromodomains is modulated by their intrinsic flexibility, and further corroborate the utility of molecular dynamics in understanding (macro)molecular recognition.</description><identifier>ISSN: 0021-2148</identifier><identifier>EISSN: 1869-5868</identifier><identifier>DOI: 10.1002/ijch.201400009</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>atomistic simulations ; Binding ; Binding sites ; computational chemistry ; drug design ; epigenetics ; Flexibility ; Histones ; Inhibitors ; Molecular dynamics ; Proteins ; proteinprotein interactions ; Recognition ; Simulation</subject><ispartof>Israel journal of chemistry, 2014-08, Vol.54 (8-9), p.1084-1092</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3</citedby><cites>FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Spiliotopoulos, Dimitrios</creatorcontrib><creatorcontrib>Caflisch, Amedeo</creatorcontrib><title>Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine</title><title>Israel journal of chemistry</title><addtitle>Isr. J. Chem</addtitle><description>Experimental protein structures provide spatial information at the atomic level. A further dimension, time, is supplemented by molecular dynamics. Since the pioneering work on the 58‐residue inhibitor of bovine pancreatic trypsin in the group of Martin Karplus in the seventies, molecular dynamics simulations have shown that the intrinsic flexibility of proteins is essential for their function. Here, we review simulation studies of bromodomains. These protein modules are involved in the recognition of acetylated lysine side chains, a post‐translational modification frequently observed in histone tails. The molecular dynamics simulations have unmasked: (i) the large plasticity of the loops lining the acetyl‐lysine binding site (coupled to its self‐occlusion), and (ii) multiple binding modes of acetyl‐lysine. These simulation results suggest that recognition of histone tails by bromodomains is modulated by their intrinsic flexibility, and further corroborate the utility of molecular dynamics in understanding (macro)molecular recognition.</description><subject>atomistic simulations</subject><subject>Binding</subject><subject>Binding sites</subject><subject>computational chemistry</subject><subject>drug design</subject><subject>epigenetics</subject><subject>Flexibility</subject><subject>Histones</subject><subject>Inhibitors</subject><subject>Molecular dynamics</subject><subject>Proteins</subject><subject>proteinprotein interactions</subject><subject>Recognition</subject><subject>Simulation</subject><issn>0021-2148</issn><issn>1869-5868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv0zAYhi0EEmVw5WyJC5d0cVw78XHr2LrRDkRB42Y58ZfNxYmL7WzLj-A_49JtQlzwxXo_Pc-nT3oRekvyKcnz4tBsmptpkZNZnp54hiak4iJjFa-eo0kCSFaQWfUSvQphsyNyISbo18pZaAarPD4Ze9WZJuC16dIgGtcH7Fp87F3ntOuUSfkL3IKy-Nj02vTX2dpEwKcW7k1trIkjVr3Gq8FGs7XwSOGV0_BnVbwBfKni4NOKpbnewUcNxNFmyzGYHl6jF62yAd48_Afo2-mHr_NFtvx0dj4_WmbNrKhEpogCzWsGda2bmmtdMq4Y0S2hLQAVFHhNctaKlGDGONVNVdFW13VKpVL0AL3f791693OAEGVnQgPWqh7cECThhaCMllwk9N0_6MYNvk_XScI4EaykJUnUdE813oXgoZVbbzrlR0lyuWtH7tqRT-0kQeyFO2Nh_A8tzy_mi7_dbO-aEOH-yVX-h-TpGiavLs_kx8XJ-upzcr_T30Sfphs</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Spiliotopoulos, Dimitrios</creator><creator>Caflisch, Amedeo</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201408</creationdate><title>Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine</title><author>Spiliotopoulos, Dimitrios ; Caflisch, Amedeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>atomistic simulations</topic><topic>Binding</topic><topic>Binding sites</topic><topic>computational chemistry</topic><topic>drug design</topic><topic>epigenetics</topic><topic>Flexibility</topic><topic>Histones</topic><topic>Inhibitors</topic><topic>Molecular dynamics</topic><topic>Proteins</topic><topic>proteinprotein interactions</topic><topic>Recognition</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spiliotopoulos, Dimitrios</creatorcontrib><creatorcontrib>Caflisch, Amedeo</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Israel journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spiliotopoulos, Dimitrios</au><au>Caflisch, Amedeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine</atitle><jtitle>Israel journal of chemistry</jtitle><addtitle>Isr. J. Chem</addtitle><date>2014-08</date><risdate>2014</risdate><volume>54</volume><issue>8-9</issue><spage>1084</spage><epage>1092</epage><pages>1084-1092</pages><issn>0021-2148</issn><eissn>1869-5868</eissn><abstract>Experimental protein structures provide spatial information at the atomic level. A further dimension, time, is supplemented by molecular dynamics. Since the pioneering work on the 58‐residue inhibitor of bovine pancreatic trypsin in the group of Martin Karplus in the seventies, molecular dynamics simulations have shown that the intrinsic flexibility of proteins is essential for their function. Here, we review simulation studies of bromodomains. These protein modules are involved in the recognition of acetylated lysine side chains, a post‐translational modification frequently observed in histone tails. The molecular dynamics simulations have unmasked: (i) the large plasticity of the loops lining the acetyl‐lysine binding site (coupled to its self‐occlusion), and (ii) multiple binding modes of acetyl‐lysine. These simulation results suggest that recognition of histone tails by bromodomains is modulated by their intrinsic flexibility, and further corroborate the utility of molecular dynamics in understanding (macro)molecular recognition.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ijch.201400009</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2148 |
ispartof | Israel journal of chemistry, 2014-08, Vol.54 (8-9), p.1084-1092 |
issn | 0021-2148 1869-5868 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629353769 |
source | Wiley |
subjects | atomistic simulations Binding Binding sites computational chemistry drug design epigenetics Flexibility Histones Inhibitors Molecular dynamics Proteins proteinprotein interactions Recognition Simulation |
title | Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulations%20of%20Bromodomains%20Reveal%20Binding-Site%20Flexibility%20and%20Multiple%20Binding%20Modes%20of%20the%20Natural%20Ligand%20Acetyl-Lysine&rft.jtitle=Israel%20journal%20of%20chemistry&rft.au=Spiliotopoulos,%20Dimitrios&rft.date=2014-08&rft.volume=54&rft.issue=8-9&rft.spage=1084&rft.epage=1092&rft.pages=1084-1092&rft.issn=0021-2148&rft.eissn=1869-5868&rft_id=info:doi/10.1002/ijch.201400009&rft_dat=%3Cproquest_cross%3E3431904621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1561957371&rft_id=info:pmid/&rfr_iscdi=true |