Loading…

Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine

Experimental protein structures provide spatial information at the atomic level. A further dimension, time, is supplemented by molecular dynamics. Since the pioneering work on the 58‐residue inhibitor of bovine pancreatic trypsin in the group of Martin Karplus in the seventies, molecular dynamics si...

Full description

Saved in:
Bibliographic Details
Published in:Israel journal of chemistry 2014-08, Vol.54 (8-9), p.1084-1092
Main Authors: Spiliotopoulos, Dimitrios, Caflisch, Amedeo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3
cites cdi_FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3
container_end_page 1092
container_issue 8-9
container_start_page 1084
container_title Israel journal of chemistry
container_volume 54
creator Spiliotopoulos, Dimitrios
Caflisch, Amedeo
description Experimental protein structures provide spatial information at the atomic level. A further dimension, time, is supplemented by molecular dynamics. Since the pioneering work on the 58‐residue inhibitor of bovine pancreatic trypsin in the group of Martin Karplus in the seventies, molecular dynamics simulations have shown that the intrinsic flexibility of proteins is essential for their function. Here, we review simulation studies of bromodomains. These protein modules are involved in the recognition of acetylated lysine side chains, a post‐translational modification frequently observed in histone tails. The molecular dynamics simulations have unmasked: (i) the large plasticity of the loops lining the acetyl‐lysine binding site (coupled to its self‐occlusion), and (ii) multiple binding modes of acetyl‐lysine. These simulation results suggest that recognition of histone tails by bromodomains is modulated by their intrinsic flexibility, and further corroborate the utility of molecular dynamics in understanding (macro)molecular recognition.
doi_str_mv 10.1002/ijch.201400009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629353769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3431904621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3</originalsourceid><addsrcrecordid>eNqFkUFv0zAYhi0EEmVw5WyJC5d0cVw78XHr2LrRDkRB42Y58ZfNxYmL7WzLj-A_49JtQlzwxXo_Pc-nT3oRekvyKcnz4tBsmptpkZNZnp54hiak4iJjFa-eo0kCSFaQWfUSvQphsyNyISbo18pZaAarPD4Ze9WZJuC16dIgGtcH7Fp87F3ntOuUSfkL3IKy-Nj02vTX2dpEwKcW7k1trIkjVr3Gq8FGs7XwSOGV0_BnVbwBfKni4NOKpbnewUcNxNFmyzGYHl6jF62yAd48_Afo2-mHr_NFtvx0dj4_WmbNrKhEpogCzWsGda2bmmtdMq4Y0S2hLQAVFHhNctaKlGDGONVNVdFW13VKpVL0AL3f791693OAEGVnQgPWqh7cECThhaCMllwk9N0_6MYNvk_XScI4EaykJUnUdE813oXgoZVbbzrlR0lyuWtH7tqRT-0kQeyFO2Nh_A8tzy_mi7_dbO-aEOH-yVX-h-TpGiavLs_kx8XJ-upzcr_T30Sfphs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561957371</pqid></control><display><type>article</type><title>Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine</title><source>Wiley</source><creator>Spiliotopoulos, Dimitrios ; Caflisch, Amedeo</creator><creatorcontrib>Spiliotopoulos, Dimitrios ; Caflisch, Amedeo</creatorcontrib><description>Experimental protein structures provide spatial information at the atomic level. A further dimension, time, is supplemented by molecular dynamics. Since the pioneering work on the 58‐residue inhibitor of bovine pancreatic trypsin in the group of Martin Karplus in the seventies, molecular dynamics simulations have shown that the intrinsic flexibility of proteins is essential for their function. Here, we review simulation studies of bromodomains. These protein modules are involved in the recognition of acetylated lysine side chains, a post‐translational modification frequently observed in histone tails. The molecular dynamics simulations have unmasked: (i) the large plasticity of the loops lining the acetyl‐lysine binding site (coupled to its self‐occlusion), and (ii) multiple binding modes of acetyl‐lysine. These simulation results suggest that recognition of histone tails by bromodomains is modulated by their intrinsic flexibility, and further corroborate the utility of molecular dynamics in understanding (macro)molecular recognition.</description><identifier>ISSN: 0021-2148</identifier><identifier>EISSN: 1869-5868</identifier><identifier>DOI: 10.1002/ijch.201400009</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>atomistic simulations ; Binding ; Binding sites ; computational chemistry ; drug design ; epigenetics ; Flexibility ; Histones ; Inhibitors ; Molecular dynamics ; Proteins ; proteinprotein interactions ; Recognition ; Simulation</subject><ispartof>Israel journal of chemistry, 2014-08, Vol.54 (8-9), p.1084-1092</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3</citedby><cites>FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Spiliotopoulos, Dimitrios</creatorcontrib><creatorcontrib>Caflisch, Amedeo</creatorcontrib><title>Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine</title><title>Israel journal of chemistry</title><addtitle>Isr. J. Chem</addtitle><description>Experimental protein structures provide spatial information at the atomic level. A further dimension, time, is supplemented by molecular dynamics. Since the pioneering work on the 58‐residue inhibitor of bovine pancreatic trypsin in the group of Martin Karplus in the seventies, molecular dynamics simulations have shown that the intrinsic flexibility of proteins is essential for their function. Here, we review simulation studies of bromodomains. These protein modules are involved in the recognition of acetylated lysine side chains, a post‐translational modification frequently observed in histone tails. The molecular dynamics simulations have unmasked: (i) the large plasticity of the loops lining the acetyl‐lysine binding site (coupled to its self‐occlusion), and (ii) multiple binding modes of acetyl‐lysine. These simulation results suggest that recognition of histone tails by bromodomains is modulated by their intrinsic flexibility, and further corroborate the utility of molecular dynamics in understanding (macro)molecular recognition.</description><subject>atomistic simulations</subject><subject>Binding</subject><subject>Binding sites</subject><subject>computational chemistry</subject><subject>drug design</subject><subject>epigenetics</subject><subject>Flexibility</subject><subject>Histones</subject><subject>Inhibitors</subject><subject>Molecular dynamics</subject><subject>Proteins</subject><subject>proteinprotein interactions</subject><subject>Recognition</subject><subject>Simulation</subject><issn>0021-2148</issn><issn>1869-5868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv0zAYhi0EEmVw5WyJC5d0cVw78XHr2LrRDkRB42Y58ZfNxYmL7WzLj-A_49JtQlzwxXo_Pc-nT3oRekvyKcnz4tBsmptpkZNZnp54hiak4iJjFa-eo0kCSFaQWfUSvQphsyNyISbo18pZaAarPD4Ze9WZJuC16dIgGtcH7Fp87F3ntOuUSfkL3IKy-Nj02vTX2dpEwKcW7k1trIkjVr3Gq8FGs7XwSOGV0_BnVbwBfKni4NOKpbnewUcNxNFmyzGYHl6jF62yAd48_Afo2-mHr_NFtvx0dj4_WmbNrKhEpogCzWsGda2bmmtdMq4Y0S2hLQAVFHhNctaKlGDGONVNVdFW13VKpVL0AL3f791693OAEGVnQgPWqh7cECThhaCMllwk9N0_6MYNvk_XScI4EaykJUnUdE813oXgoZVbbzrlR0lyuWtH7tqRT-0kQeyFO2Nh_A8tzy_mi7_dbO-aEOH-yVX-h-TpGiavLs_kx8XJ-upzcr_T30Sfphs</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Spiliotopoulos, Dimitrios</creator><creator>Caflisch, Amedeo</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201408</creationdate><title>Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine</title><author>Spiliotopoulos, Dimitrios ; Caflisch, Amedeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>atomistic simulations</topic><topic>Binding</topic><topic>Binding sites</topic><topic>computational chemistry</topic><topic>drug design</topic><topic>epigenetics</topic><topic>Flexibility</topic><topic>Histones</topic><topic>Inhibitors</topic><topic>Molecular dynamics</topic><topic>Proteins</topic><topic>proteinprotein interactions</topic><topic>Recognition</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spiliotopoulos, Dimitrios</creatorcontrib><creatorcontrib>Caflisch, Amedeo</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Israel journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spiliotopoulos, Dimitrios</au><au>Caflisch, Amedeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine</atitle><jtitle>Israel journal of chemistry</jtitle><addtitle>Isr. J. Chem</addtitle><date>2014-08</date><risdate>2014</risdate><volume>54</volume><issue>8-9</issue><spage>1084</spage><epage>1092</epage><pages>1084-1092</pages><issn>0021-2148</issn><eissn>1869-5868</eissn><abstract>Experimental protein structures provide spatial information at the atomic level. A further dimension, time, is supplemented by molecular dynamics. Since the pioneering work on the 58‐residue inhibitor of bovine pancreatic trypsin in the group of Martin Karplus in the seventies, molecular dynamics simulations have shown that the intrinsic flexibility of proteins is essential for their function. Here, we review simulation studies of bromodomains. These protein modules are involved in the recognition of acetylated lysine side chains, a post‐translational modification frequently observed in histone tails. The molecular dynamics simulations have unmasked: (i) the large plasticity of the loops lining the acetyl‐lysine binding site (coupled to its self‐occlusion), and (ii) multiple binding modes of acetyl‐lysine. These simulation results suggest that recognition of histone tails by bromodomains is modulated by their intrinsic flexibility, and further corroborate the utility of molecular dynamics in understanding (macro)molecular recognition.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ijch.201400009</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-2148
ispartof Israel journal of chemistry, 2014-08, Vol.54 (8-9), p.1084-1092
issn 0021-2148
1869-5868
language eng
recordid cdi_proquest_miscellaneous_1629353769
source Wiley
subjects atomistic simulations
Binding
Binding sites
computational chemistry
drug design
epigenetics
Flexibility
Histones
Inhibitors
Molecular dynamics
Proteins
proteinprotein interactions
Recognition
Simulation
title Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulations%20of%20Bromodomains%20Reveal%20Binding-Site%20Flexibility%20and%20Multiple%20Binding%20Modes%20of%20the%20Natural%20Ligand%20Acetyl-Lysine&rft.jtitle=Israel%20journal%20of%20chemistry&rft.au=Spiliotopoulos,%20Dimitrios&rft.date=2014-08&rft.volume=54&rft.issue=8-9&rft.spage=1084&rft.epage=1092&rft.pages=1084-1092&rft.issn=0021-2148&rft.eissn=1869-5868&rft_id=info:doi/10.1002/ijch.201400009&rft_dat=%3Cproquest_cross%3E3431904621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4289-a1aed6b5ebbdcb6dd756a51df13fee393e6b105f9feee4563dc883fdbbe457aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1561957371&rft_id=info:pmid/&rfr_iscdi=true