Loading…

Harmonic vibrations of nanosized piezoelectric bodies with surface effects

We consider the harmonic and eigenvalue problems for piezoelectric nanodimensional bodies with account for surface stresses and surface electric charges. For harmonic problem new mathematical model is suggested, which generalizes the model of the piezoelectric medium with damping properties, boundar...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2014-10, Vol.94 (10), p.878-892
Main Authors: Nasedkin, A.V., Eremeyev, V.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3885-468e5a9e8be2b6e5387aad92845710ca326fe90eea9a639d8c3bcdc86e8714f13
cites cdi_FETCH-LOGICAL-c3885-468e5a9e8be2b6e5387aad92845710ca326fe90eea9a639d8c3bcdc86e8714f13
container_end_page 892
container_issue 10
container_start_page 878
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 94
creator Nasedkin, A.V.
Eremeyev, V.A.
description We consider the harmonic and eigenvalue problems for piezoelectric nanodimensional bodies with account for surface stresses and surface electric charges. For harmonic problem new mathematical model is suggested, which generalizes the model of the piezoelectric medium with damping properties, boundary conditions of contact type and surface effects. The classical and generalized (weak) statements for harmonic and eigenvalue problems are formulated in the extended and reduced forms. The spectral properties of the eigenvalue problems with account for surface effects are determined. A variational minimal principle is constructed which is similar to the well‐known variational principle for problems for pure elastic and piezoelectric media. The discreteness of the spectrum and completeness of the eigenvectors are proved. As a consequence of variational principle, the properties of the natural frequencies increase or decrease are established for changing the mechanical, electric and “surface” boundary conditions and the moduli of piezoelectric body. The finite element approaches are described for determination of the natural frequencies, the resonance and antiresonance frequencies and harmonic behavior of nanosized piezoelectric bodies with account for surface effects. For harmonic problem new mathematical model is suggested, which generalizes the model of the piezoelectric medium with damping properties, boundary conditions of contact type and surface effects. The classical and generalized (weak) statements for harmonic and eigenvalue problems are formulated in the extended and reduced forms. The spectral properties of the eigenvalue problems with account for surface effects are determined. A variational minimal principle is constructed which is similar to the well‐known variational principle for problems for pure elastic and piezoelectric media.
doi_str_mv 10.1002/zamm.201300085
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629357496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3448301201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-468e5a9e8be2b6e5387aad92845710ca326fe90eea9a639d8c3bcdc86e8714f13</originalsourceid><addsrcrecordid>eNqFkMlOwzAQQC0EEqVw5RyJC5cUL7FjHxFLAZVNYpG4WI4zES5JXOyUpV9PqiKEuHCaw7w3Gj2EdgkeEYzpwcI0zYhiwjDGkq-hAeGUpBnGZB0NMM6ylFKRb6KtGKc9QhRhA3RxZkLjW2eTN1cE0znfxsRXSWtaH90CymTmYOGhBtuFnip86SAm7657TuI8VMZCAlXVb-M22qhMHWHnew7R_enJ3dFZOrkenx8dTlLLpORpJiRwo0AWQAsBnMncmFJRmfGcYGsYFRUoDGCUEUyV0rLCllYKkDnJKsKGaH91dxb86xxipxsXLdS1acHPoyaCKsbzTIke3fuDTv08tP13mnAhRKZypXpqtKJs8DEGqPQsuMaET02wXqbVy7T6J20vqJXw7mr4_IfWT4eXl7_ddOW62MHHj2vCixY5y7l-vBrrm2P19DC-utWSfQEgUo0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566649799</pqid></control><display><type>article</type><title>Harmonic vibrations of nanosized piezoelectric bodies with surface effects</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Nasedkin, A.V. ; Eremeyev, V.A.</creator><creatorcontrib>Nasedkin, A.V. ; Eremeyev, V.A.</creatorcontrib><description>We consider the harmonic and eigenvalue problems for piezoelectric nanodimensional bodies with account for surface stresses and surface electric charges. For harmonic problem new mathematical model is suggested, which generalizes the model of the piezoelectric medium with damping properties, boundary conditions of contact type and surface effects. The classical and generalized (weak) statements for harmonic and eigenvalue problems are formulated in the extended and reduced forms. The spectral properties of the eigenvalue problems with account for surface effects are determined. A variational minimal principle is constructed which is similar to the well‐known variational principle for problems for pure elastic and piezoelectric media. The discreteness of the spectrum and completeness of the eigenvectors are proved. As a consequence of variational principle, the properties of the natural frequencies increase or decrease are established for changing the mechanical, electric and “surface” boundary conditions and the moduli of piezoelectric body. The finite element approaches are described for determination of the natural frequencies, the resonance and antiresonance frequencies and harmonic behavior of nanosized piezoelectric bodies with account for surface effects. For harmonic problem new mathematical model is suggested, which generalizes the model of the piezoelectric medium with damping properties, boundary conditions of contact type and surface effects. The classical and generalized (weak) statements for harmonic and eigenvalue problems are formulated in the extended and reduced forms. The spectral properties of the eigenvalue problems with account for surface effects are determined. A variational minimal principle is constructed which is similar to the well‐known variational principle for problems for pure elastic and piezoelectric media.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201300085</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Boundary conditions ; eigenvalue ; Eigenvalues ; finite element method ; harmonic oscillations ; Harmonics ; Mathematical analysis ; Mathematical models ; nanomechanics ; Nanostructure ; Piezoelectricity ; resonance frequencies ; Simulation ; surface effect ; surface stress ; Variational principles</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2014-10, Vol.94 (10), p.878-892</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-468e5a9e8be2b6e5387aad92845710ca326fe90eea9a639d8c3bcdc86e8714f13</citedby><cites>FETCH-LOGICAL-c3885-468e5a9e8be2b6e5387aad92845710ca326fe90eea9a639d8c3bcdc86e8714f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Nasedkin, A.V.</creatorcontrib><creatorcontrib>Eremeyev, V.A.</creatorcontrib><title>Harmonic vibrations of nanosized piezoelectric bodies with surface effects</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>We consider the harmonic and eigenvalue problems for piezoelectric nanodimensional bodies with account for surface stresses and surface electric charges. For harmonic problem new mathematical model is suggested, which generalizes the model of the piezoelectric medium with damping properties, boundary conditions of contact type and surface effects. The classical and generalized (weak) statements for harmonic and eigenvalue problems are formulated in the extended and reduced forms. The spectral properties of the eigenvalue problems with account for surface effects are determined. A variational minimal principle is constructed which is similar to the well‐known variational principle for problems for pure elastic and piezoelectric media. The discreteness of the spectrum and completeness of the eigenvectors are proved. As a consequence of variational principle, the properties of the natural frequencies increase or decrease are established for changing the mechanical, electric and “surface” boundary conditions and the moduli of piezoelectric body. The finite element approaches are described for determination of the natural frequencies, the resonance and antiresonance frequencies and harmonic behavior of nanosized piezoelectric bodies with account for surface effects. For harmonic problem new mathematical model is suggested, which generalizes the model of the piezoelectric medium with damping properties, boundary conditions of contact type and surface effects. The classical and generalized (weak) statements for harmonic and eigenvalue problems are formulated in the extended and reduced forms. The spectral properties of the eigenvalue problems with account for surface effects are determined. A variational minimal principle is constructed which is similar to the well‐known variational principle for problems for pure elastic and piezoelectric media.</description><subject>Boundary conditions</subject><subject>eigenvalue</subject><subject>Eigenvalues</subject><subject>finite element method</subject><subject>harmonic oscillations</subject><subject>Harmonics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>nanomechanics</subject><subject>Nanostructure</subject><subject>Piezoelectricity</subject><subject>resonance frequencies</subject><subject>Simulation</subject><subject>surface effect</subject><subject>surface stress</subject><subject>Variational principles</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAQQC0EEqVw5RyJC5cUL7FjHxFLAZVNYpG4WI4zES5JXOyUpV9PqiKEuHCaw7w3Gj2EdgkeEYzpwcI0zYhiwjDGkq-hAeGUpBnGZB0NMM6ylFKRb6KtGKc9QhRhA3RxZkLjW2eTN1cE0znfxsRXSWtaH90CymTmYOGhBtuFnip86SAm7657TuI8VMZCAlXVb-M22qhMHWHnew7R_enJ3dFZOrkenx8dTlLLpORpJiRwo0AWQAsBnMncmFJRmfGcYGsYFRUoDGCUEUyV0rLCllYKkDnJKsKGaH91dxb86xxipxsXLdS1acHPoyaCKsbzTIke3fuDTv08tP13mnAhRKZypXpqtKJs8DEGqPQsuMaET02wXqbVy7T6J20vqJXw7mr4_IfWT4eXl7_ddOW62MHHj2vCixY5y7l-vBrrm2P19DC-utWSfQEgUo0U</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Nasedkin, A.V.</creator><creator>Eremeyev, V.A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope></search><sort><creationdate>201410</creationdate><title>Harmonic vibrations of nanosized piezoelectric bodies with surface effects</title><author>Nasedkin, A.V. ; Eremeyev, V.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-468e5a9e8be2b6e5387aad92845710ca326fe90eea9a639d8c3bcdc86e8714f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundary conditions</topic><topic>eigenvalue</topic><topic>Eigenvalues</topic><topic>finite element method</topic><topic>harmonic oscillations</topic><topic>Harmonics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>nanomechanics</topic><topic>Nanostructure</topic><topic>Piezoelectricity</topic><topic>resonance frequencies</topic><topic>Simulation</topic><topic>surface effect</topic><topic>surface stress</topic><topic>Variational principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasedkin, A.V.</creatorcontrib><creatorcontrib>Eremeyev, V.A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasedkin, A.V.</au><au>Eremeyev, V.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmonic vibrations of nanosized piezoelectric bodies with surface effects</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2014-10</date><risdate>2014</risdate><volume>94</volume><issue>10</issue><spage>878</spage><epage>892</epage><pages>878-892</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>We consider the harmonic and eigenvalue problems for piezoelectric nanodimensional bodies with account for surface stresses and surface electric charges. For harmonic problem new mathematical model is suggested, which generalizes the model of the piezoelectric medium with damping properties, boundary conditions of contact type and surface effects. The classical and generalized (weak) statements for harmonic and eigenvalue problems are formulated in the extended and reduced forms. The spectral properties of the eigenvalue problems with account for surface effects are determined. A variational minimal principle is constructed which is similar to the well‐known variational principle for problems for pure elastic and piezoelectric media. The discreteness of the spectrum and completeness of the eigenvectors are proved. As a consequence of variational principle, the properties of the natural frequencies increase or decrease are established for changing the mechanical, electric and “surface” boundary conditions and the moduli of piezoelectric body. The finite element approaches are described for determination of the natural frequencies, the resonance and antiresonance frequencies and harmonic behavior of nanosized piezoelectric bodies with account for surface effects. For harmonic problem new mathematical model is suggested, which generalizes the model of the piezoelectric medium with damping properties, boundary conditions of contact type and surface effects. The classical and generalized (weak) statements for harmonic and eigenvalue problems are formulated in the extended and reduced forms. The spectral properties of the eigenvalue problems with account for surface effects are determined. A variational minimal principle is constructed which is similar to the well‐known variational principle for problems for pure elastic and piezoelectric media.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.201300085</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2014-10, Vol.94 (10), p.878-892
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_miscellaneous_1629357496
source Wiley-Blackwell Read & Publish Collection
subjects Boundary conditions
eigenvalue
Eigenvalues
finite element method
harmonic oscillations
Harmonics
Mathematical analysis
Mathematical models
nanomechanics
Nanostructure
Piezoelectricity
resonance frequencies
Simulation
surface effect
surface stress
Variational principles
title Harmonic vibrations of nanosized piezoelectric bodies with surface effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmonic%20vibrations%20of%20nanosized%20piezoelectric%20bodies%20with%20surface%20effects&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Nasedkin,%20A.V.&rft.date=2014-10&rft.volume=94&rft.issue=10&rft.spage=878&rft.epage=892&rft.pages=878-892&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201300085&rft_dat=%3Cproquest_cross%3E3448301201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3885-468e5a9e8be2b6e5387aad92845710ca326fe90eea9a639d8c3bcdc86e8714f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1566649799&rft_id=info:pmid/&rfr_iscdi=true