Loading…
A Signal- and Transient-Current Boosting Amplifier for Large Capacitive Load Applications
A signal- and transient-current boosting (STCB) circuit is proposed and applied to a single-stage amplifier driving large capacitive loads. The proposed STCB circuit provides gain-bandwidth product (GBW) extension, slew-rate (SR) improvement and gain enhancement to the amplifier, with only slight al...
Saved in:
Published in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2014-10, Vol.61 (10), p.2777-2785 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A signal- and transient-current boosting (STCB) circuit is proposed and applied to a single-stage amplifier driving large capacitive loads. The proposed STCB circuit provides gain-bandwidth product (GBW) extension, slew-rate (SR) improvement and gain enhancement to the amplifier, with only slight alterations to the frequency response and transient response of the single-stage amplifier driving large capacitive loads. No on-chip capacitor or resistor is required. The STCB amplifier is fabricated in a commercial 0.18-μm CMOS technology. The active chip area is 0.00705 mm 2 . The supply is 1.8 V, and the current consumption is 20.3 μA. The capacitive load (C O ) ranges from about 4.4 nF to 19 nF. The measured results with a ~ 19-nF load show the small-signal figure-of-merit (FOMS=GBW·C O /power) and the large-signal figure-of-merit (FOML=SR·C O /power) are 150345 MHz · pF/mW and 31213 V/μs·pF/mW, respectively, which correspond to improvements of 1.52 times and 1.36 times, respectively, to the prior art. The achieved phase margin and gain margin are 80.8 ° and 36.3 dB, respectively. |
---|---|
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2014.2333364 |