Loading…
Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme
A recently proposed modification to fully compressible schemes significantly improves the resolution of low-Mach-number features, tackling the problem of excessive numerical dissipation as the Mach number reduces. This paper explores the application of this modification to Reynolds-averaged Navier–S...
Saved in:
Published in: | AIAA journal 2014-11, Vol.52 (11), p.2559-2575 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83 |
---|---|
cites | cdi_FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83 |
container_end_page | 2575 |
container_issue | 11 |
container_start_page | 2559 |
container_title | AIAA journal |
container_volume | 52 |
creator | Garcia-Uceda Juarez, A Raimo, A Shapiro, E Thornber, B |
description | A recently proposed modification to fully compressible schemes significantly improves the resolution of low-Mach-number features, tackling the problem of excessive numerical dissipation as the Mach number reduces. This paper explores the application of this modification to Reynolds-averaged Navier–Stokes simulations using second- and fifth-order in-space schemes. Following verification of the modeling approach, four test cases are employed to highlight the scheme performance, including a backward-facing step, a two-dimensional lid-driven cavity, the NACA 4412 airfoil (incorporating a trailing-edge separation), and finally a Mach 2.25 oblique shock-wave–boundary-layer interaction. It demonstrates first that the converged solution is grid- and scheme-independent, as expected, and that the low-Mach-number correction provides a significant improvement in low-Mach-number regions. Because this correction is easy to implement, computationally inexpensive, and stable, the conclusion is that it should be recommended for all existing Godunov-type Reynolds-averaged Navier–Stokes solvers. |
doi_str_mv | 10.2514/1.J052948 |
format | article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629360918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3456042731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcICKKLqTm5zCRLKdYLLS7agruQyWTslLnUZAbp2zu1XYiCq8PhfPwcfoQugYyoAH4HoxciqOLyCA1AMBYxKd6O0YAQAhFwQU_RWQjrfqOJhAGazVtnsi1edD7tSle3eFI2n3jcVJuuNW3R1AEvQ1G_Y4On_WFm7ApPurLcfhvvQijS0uG5XbnKnaOT3JTBXRzmEC0nD4vxUzR9fXwe308jw6RqoyzjUiqap0kugKnY8lgxoLFNAHKiUiYT65TkUoCELAbGLLjEZoznLLW5ZEN0s8_d-Oajc6HVVRGsK0tTu6YLGmKqWEwU7OjVL7puOl_332nKVQ-FSMh_CvoclvD-z17d7pX1TQje5Xrji8r4rQaid_Vr0If6e3u9t6Yw5kfaH_gFxbB_2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609374139</pqid></control><display><type>article</type><title>Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme</title><source>Alma/SFX Local Collection</source><creator>Garcia-Uceda Juarez, A ; Raimo, A ; Shapiro, E ; Thornber, B</creator><creatorcontrib>Garcia-Uceda Juarez, A ; Raimo, A ; Shapiro, E ; Thornber, B</creatorcontrib><description>A recently proposed modification to fully compressible schemes significantly improves the resolution of low-Mach-number features, tackling the problem of excessive numerical dissipation as the Mach number reduces. This paper explores the application of this modification to Reynolds-averaged Navier–Stokes simulations using second- and fifth-order in-space schemes. Following verification of the modeling approach, four test cases are employed to highlight the scheme performance, including a backward-facing step, a two-dimensional lid-driven cavity, the NACA 4412 airfoil (incorporating a trailing-edge separation), and finally a Mach 2.25 oblique shock-wave–boundary-layer interaction. It demonstrates first that the converged solution is grid- and scheme-independent, as expected, and that the low-Mach-number correction provides a significant improvement in low-Mach-number regions. Because this correction is easy to implement, computationally inexpensive, and stable, the conclusion is that it should be recommended for all existing Godunov-type Reynolds-averaged Navier–Stokes solvers.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J052948</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Aerospace engineering ; Backward facing steps ; Boundary layer interaction ; Compressibility ; Computation ; Computational fluid dynamics ; Fluid dynamics ; Fluid flow ; Holes ; Mach number ; Mathematical models ; Navier-Stokes equations ; Numerical dissipation ; Oblique shock waves ; Solvers ; Turbulence ; Turbulent flow</subject><ispartof>AIAA journal, 2014-11, Vol.52 (11), p.2559-2575</ispartof><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-385X/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83</citedby><cites>FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Garcia-Uceda Juarez, A</creatorcontrib><creatorcontrib>Raimo, A</creatorcontrib><creatorcontrib>Shapiro, E</creatorcontrib><creatorcontrib>Thornber, B</creatorcontrib><title>Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme</title><title>AIAA journal</title><description>A recently proposed modification to fully compressible schemes significantly improves the resolution of low-Mach-number features, tackling the problem of excessive numerical dissipation as the Mach number reduces. This paper explores the application of this modification to Reynolds-averaged Navier–Stokes simulations using second- and fifth-order in-space schemes. Following verification of the modeling approach, four test cases are employed to highlight the scheme performance, including a backward-facing step, a two-dimensional lid-driven cavity, the NACA 4412 airfoil (incorporating a trailing-edge separation), and finally a Mach 2.25 oblique shock-wave–boundary-layer interaction. It demonstrates first that the converged solution is grid- and scheme-independent, as expected, and that the low-Mach-number correction provides a significant improvement in low-Mach-number regions. Because this correction is easy to implement, computationally inexpensive, and stable, the conclusion is that it should be recommended for all existing Godunov-type Reynolds-averaged Navier–Stokes solvers.</description><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Backward facing steps</subject><subject>Boundary layer interaction</subject><subject>Compressibility</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Holes</subject><subject>Mach number</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Numerical dissipation</subject><subject>Oblique shock waves</subject><subject>Solvers</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcICKKLqTm5zCRLKdYLLS7agruQyWTslLnUZAbp2zu1XYiCq8PhfPwcfoQugYyoAH4HoxciqOLyCA1AMBYxKd6O0YAQAhFwQU_RWQjrfqOJhAGazVtnsi1edD7tSle3eFI2n3jcVJuuNW3R1AEvQ1G_Y4On_WFm7ApPurLcfhvvQijS0uG5XbnKnaOT3JTBXRzmEC0nD4vxUzR9fXwe308jw6RqoyzjUiqap0kugKnY8lgxoLFNAHKiUiYT65TkUoCELAbGLLjEZoznLLW5ZEN0s8_d-Oajc6HVVRGsK0tTu6YLGmKqWEwU7OjVL7puOl_332nKVQ-FSMh_CvoclvD-z17d7pX1TQje5Xrji8r4rQaid_Vr0If6e3u9t6Yw5kfaH_gFxbB_2Q</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Garcia-Uceda Juarez, A</creator><creator>Raimo, A</creator><creator>Shapiro, E</creator><creator>Thornber, B</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201411</creationdate><title>Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme</title><author>Garcia-Uceda Juarez, A ; Raimo, A ; Shapiro, E ; Thornber, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Backward facing steps</topic><topic>Boundary layer interaction</topic><topic>Compressibility</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Holes</topic><topic>Mach number</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Numerical dissipation</topic><topic>Oblique shock waves</topic><topic>Solvers</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Uceda Juarez, A</creatorcontrib><creatorcontrib>Raimo, A</creatorcontrib><creatorcontrib>Shapiro, E</creatorcontrib><creatorcontrib>Thornber, B</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Uceda Juarez, A</au><au>Raimo, A</au><au>Shapiro, E</au><au>Thornber, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme</atitle><jtitle>AIAA journal</jtitle><date>2014-11</date><risdate>2014</risdate><volume>52</volume><issue>11</issue><spage>2559</spage><epage>2575</epage><pages>2559-2575</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>A recently proposed modification to fully compressible schemes significantly improves the resolution of low-Mach-number features, tackling the problem of excessive numerical dissipation as the Mach number reduces. This paper explores the application of this modification to Reynolds-averaged Navier–Stokes simulations using second- and fifth-order in-space schemes. Following verification of the modeling approach, four test cases are employed to highlight the scheme performance, including a backward-facing step, a two-dimensional lid-driven cavity, the NACA 4412 airfoil (incorporating a trailing-edge separation), and finally a Mach 2.25 oblique shock-wave–boundary-layer interaction. It demonstrates first that the converged solution is grid- and scheme-independent, as expected, and that the low-Mach-number correction provides a significant improvement in low-Mach-number regions. Because this correction is easy to implement, computationally inexpensive, and stable, the conclusion is that it should be recommended for all existing Godunov-type Reynolds-averaged Navier–Stokes solvers.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J052948</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2014-11, Vol.52 (11), p.2559-2575 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_proquest_miscellaneous_1629360918 |
source | Alma/SFX Local Collection |
subjects | Aerodynamics Aerospace engineering Backward facing steps Boundary layer interaction Compressibility Computation Computational fluid dynamics Fluid dynamics Fluid flow Holes Mach number Mathematical models Navier-Stokes equations Numerical dissipation Oblique shock waves Solvers Turbulence Turbulent flow |
title | Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady%20Turbulent%20Flow%20Computations%20Using%20a%20Low%20Mach%20Fully%20Compressible%20Scheme&rft.jtitle=AIAA%20journal&rft.au=Garcia-Uceda%20Juarez,%20A&rft.date=2014-11&rft.volume=52&rft.issue=11&rft.spage=2559&rft.epage=2575&rft.pages=2559-2575&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J052948&rft_dat=%3Cproquest_aiaa_%3E3456042731%3C/proquest_aiaa_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1609374139&rft_id=info:pmid/&rfr_iscdi=true |