Loading…

Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme

A recently proposed modification to fully compressible schemes significantly improves the resolution of low-Mach-number features, tackling the problem of excessive numerical dissipation as the Mach number reduces. This paper explores the application of this modification to Reynolds-averaged Navier–S...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2014-11, Vol.52 (11), p.2559-2575
Main Authors: Garcia-Uceda Juarez, A, Raimo, A, Shapiro, E, Thornber, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83
cites cdi_FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83
container_end_page 2575
container_issue 11
container_start_page 2559
container_title AIAA journal
container_volume 52
creator Garcia-Uceda Juarez, A
Raimo, A
Shapiro, E
Thornber, B
description A recently proposed modification to fully compressible schemes significantly improves the resolution of low-Mach-number features, tackling the problem of excessive numerical dissipation as the Mach number reduces. This paper explores the application of this modification to Reynolds-averaged Navier–Stokes simulations using second- and fifth-order in-space schemes. Following verification of the modeling approach, four test cases are employed to highlight the scheme performance, including a backward-facing step, a two-dimensional lid-driven cavity, the NACA 4412 airfoil (incorporating a trailing-edge separation), and finally a Mach 2.25 oblique shock-wave–boundary-layer interaction. It demonstrates first that the converged solution is grid- and scheme-independent, as expected, and that the low-Mach-number correction provides a significant improvement in low-Mach-number regions. Because this correction is easy to implement, computationally inexpensive, and stable, the conclusion is that it should be recommended for all existing Godunov-type Reynolds-averaged Navier–Stokes solvers.
doi_str_mv 10.2514/1.J052948
format article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629360918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3456042731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcICKKLqTm5zCRLKdYLLS7agruQyWTslLnUZAbp2zu1XYiCq8PhfPwcfoQugYyoAH4HoxciqOLyCA1AMBYxKd6O0YAQAhFwQU_RWQjrfqOJhAGazVtnsi1edD7tSle3eFI2n3jcVJuuNW3R1AEvQ1G_Y4On_WFm7ApPurLcfhvvQijS0uG5XbnKnaOT3JTBXRzmEC0nD4vxUzR9fXwe308jw6RqoyzjUiqap0kugKnY8lgxoLFNAHKiUiYT65TkUoCELAbGLLjEZoznLLW5ZEN0s8_d-Oajc6HVVRGsK0tTu6YLGmKqWEwU7OjVL7puOl_332nKVQ-FSMh_CvoclvD-z17d7pX1TQje5Xrji8r4rQaid_Vr0If6e3u9t6Yw5kfaH_gFxbB_2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609374139</pqid></control><display><type>article</type><title>Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme</title><source>Alma/SFX Local Collection</source><creator>Garcia-Uceda Juarez, A ; Raimo, A ; Shapiro, E ; Thornber, B</creator><creatorcontrib>Garcia-Uceda Juarez, A ; Raimo, A ; Shapiro, E ; Thornber, B</creatorcontrib><description>A recently proposed modification to fully compressible schemes significantly improves the resolution of low-Mach-number features, tackling the problem of excessive numerical dissipation as the Mach number reduces. This paper explores the application of this modification to Reynolds-averaged Navier–Stokes simulations using second- and fifth-order in-space schemes. Following verification of the modeling approach, four test cases are employed to highlight the scheme performance, including a backward-facing step, a two-dimensional lid-driven cavity, the NACA 4412 airfoil (incorporating a trailing-edge separation), and finally a Mach 2.25 oblique shock-wave–boundary-layer interaction. It demonstrates first that the converged solution is grid- and scheme-independent, as expected, and that the low-Mach-number correction provides a significant improvement in low-Mach-number regions. Because this correction is easy to implement, computationally inexpensive, and stable, the conclusion is that it should be recommended for all existing Godunov-type Reynolds-averaged Navier–Stokes solvers.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J052948</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Aerospace engineering ; Backward facing steps ; Boundary layer interaction ; Compressibility ; Computation ; Computational fluid dynamics ; Fluid dynamics ; Fluid flow ; Holes ; Mach number ; Mathematical models ; Navier-Stokes equations ; Numerical dissipation ; Oblique shock waves ; Solvers ; Turbulence ; Turbulent flow</subject><ispartof>AIAA journal, 2014-11, Vol.52 (11), p.2559-2575</ispartof><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-385X/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83</citedby><cites>FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Garcia-Uceda Juarez, A</creatorcontrib><creatorcontrib>Raimo, A</creatorcontrib><creatorcontrib>Shapiro, E</creatorcontrib><creatorcontrib>Thornber, B</creatorcontrib><title>Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme</title><title>AIAA journal</title><description>A recently proposed modification to fully compressible schemes significantly improves the resolution of low-Mach-number features, tackling the problem of excessive numerical dissipation as the Mach number reduces. This paper explores the application of this modification to Reynolds-averaged Navier–Stokes simulations using second- and fifth-order in-space schemes. Following verification of the modeling approach, four test cases are employed to highlight the scheme performance, including a backward-facing step, a two-dimensional lid-driven cavity, the NACA 4412 airfoil (incorporating a trailing-edge separation), and finally a Mach 2.25 oblique shock-wave–boundary-layer interaction. It demonstrates first that the converged solution is grid- and scheme-independent, as expected, and that the low-Mach-number correction provides a significant improvement in low-Mach-number regions. Because this correction is easy to implement, computationally inexpensive, and stable, the conclusion is that it should be recommended for all existing Godunov-type Reynolds-averaged Navier–Stokes solvers.</description><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Backward facing steps</subject><subject>Boundary layer interaction</subject><subject>Compressibility</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Holes</subject><subject>Mach number</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Numerical dissipation</subject><subject>Oblique shock waves</subject><subject>Solvers</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcICKKLqTm5zCRLKdYLLS7agruQyWTslLnUZAbp2zu1XYiCq8PhfPwcfoQugYyoAH4HoxciqOLyCA1AMBYxKd6O0YAQAhFwQU_RWQjrfqOJhAGazVtnsi1edD7tSle3eFI2n3jcVJuuNW3R1AEvQ1G_Y4On_WFm7ApPurLcfhvvQijS0uG5XbnKnaOT3JTBXRzmEC0nD4vxUzR9fXwe308jw6RqoyzjUiqap0kugKnY8lgxoLFNAHKiUiYT65TkUoCELAbGLLjEZoznLLW5ZEN0s8_d-Oajc6HVVRGsK0tTu6YLGmKqWEwU7OjVL7puOl_332nKVQ-FSMh_CvoclvD-z17d7pX1TQje5Xrji8r4rQaid_Vr0If6e3u9t6Yw5kfaH_gFxbB_2Q</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Garcia-Uceda Juarez, A</creator><creator>Raimo, A</creator><creator>Shapiro, E</creator><creator>Thornber, B</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201411</creationdate><title>Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme</title><author>Garcia-Uceda Juarez, A ; Raimo, A ; Shapiro, E ; Thornber, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Backward facing steps</topic><topic>Boundary layer interaction</topic><topic>Compressibility</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Holes</topic><topic>Mach number</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Numerical dissipation</topic><topic>Oblique shock waves</topic><topic>Solvers</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Uceda Juarez, A</creatorcontrib><creatorcontrib>Raimo, A</creatorcontrib><creatorcontrib>Shapiro, E</creatorcontrib><creatorcontrib>Thornber, B</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Uceda Juarez, A</au><au>Raimo, A</au><au>Shapiro, E</au><au>Thornber, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme</atitle><jtitle>AIAA journal</jtitle><date>2014-11</date><risdate>2014</risdate><volume>52</volume><issue>11</issue><spage>2559</spage><epage>2575</epage><pages>2559-2575</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>A recently proposed modification to fully compressible schemes significantly improves the resolution of low-Mach-number features, tackling the problem of excessive numerical dissipation as the Mach number reduces. This paper explores the application of this modification to Reynolds-averaged Navier–Stokes simulations using second- and fifth-order in-space schemes. Following verification of the modeling approach, four test cases are employed to highlight the scheme performance, including a backward-facing step, a two-dimensional lid-driven cavity, the NACA 4412 airfoil (incorporating a trailing-edge separation), and finally a Mach 2.25 oblique shock-wave–boundary-layer interaction. It demonstrates first that the converged solution is grid- and scheme-independent, as expected, and that the low-Mach-number correction provides a significant improvement in low-Mach-number regions. Because this correction is easy to implement, computationally inexpensive, and stable, the conclusion is that it should be recommended for all existing Godunov-type Reynolds-averaged Navier–Stokes solvers.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J052948</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2014-11, Vol.52 (11), p.2559-2575
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_miscellaneous_1629360918
source Alma/SFX Local Collection
subjects Aerodynamics
Aerospace engineering
Backward facing steps
Boundary layer interaction
Compressibility
Computation
Computational fluid dynamics
Fluid dynamics
Fluid flow
Holes
Mach number
Mathematical models
Navier-Stokes equations
Numerical dissipation
Oblique shock waves
Solvers
Turbulence
Turbulent flow
title Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady%20Turbulent%20Flow%20Computations%20Using%20a%20Low%20Mach%20Fully%20Compressible%20Scheme&rft.jtitle=AIAA%20journal&rft.au=Garcia-Uceda%20Juarez,%20A&rft.date=2014-11&rft.volume=52&rft.issue=11&rft.spage=2559&rft.epage=2575&rft.pages=2559-2575&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J052948&rft_dat=%3Cproquest_aiaa_%3E3456042731%3C/proquest_aiaa_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a389t-dd48892fb7f51396c4693126c711f09b387ce98485181d6133c1e7cd34f3bcf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1609374139&rft_id=info:pmid/&rfr_iscdi=true